Adequate hypothermic storage of human mesenchymal stem cells (hMSCs) is of fundamental importance since they have been explored in several regenerative medicine initiatives. However, the actual clinical application of hMSCs necessitates hypothermic storage for long periods, a process that requires the use of non-toxic and efficient cryo-reagents capable of maintaining high viability and differentiating properties after thawing. Current cryopreservation methods are based on cryoprotectant agents (CPAs) containing dimethylsulphoxide (DMSO), which have been shown to be toxic for clinical applications. In this study, we describe a simple and effective trehalose (TRE)-based solution to cryo-store human umbilical cord-derived MSCs (UC-MSCs) in liquid nitrogen. Cells viability, identity, chromosomal stability, proliferative and migration capacity, and stress response were assessed after cryopreservation in TRE as CPA, testing different concentrations by itself or in combination with ethylene glycol (EG). Here we show that TRE-stored UC-MSCs provided lower cell recovery rates compared with DMSO-based solution, but maintained good functional properties, stability, and differentiating potential. The best cell recovery was obtained using 0.5 M TRE with 10% EG showing no differences in the osteogenic, adipogenic, and chondrogenic differentiation capacity. A second cycle of cryopreservation in this TRE-based solution had no additional impact on the viability and morphology, although slightly affected cell migration. Furthermore, the expression of the stress-related genes, , , , , and , did not show a higher response in UC-MSCs cryopreserved in 0.5 M TRE + 10% EG compared with DMSO. Together these results, in addition to ascertained therapeutic properties of TRE, provide sufficient evidence to consider TRE-based medium as a low-cost and efficient solution for the storage of human UC-MSCs cells and potentially substitute DMSO-based cryo-reagents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/bio.2024.0025 | DOI Listing |
J Cancer Res Clin Oncol
December 2024
The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
Purpose: This study aimed to investigate that AKT1-Mediated NOTCH1 phosphorylation promotes gastric cancer (GC) progression via targeted regulation of IRS-1 transcription.
Methods: The study utilized databases such as PhosphositePlus, TRANSFAC, CHEA, GPS 5.0, and TCGA, along with experimental techniques including Western Blot, co-IP, in vitro kinase assay, construction of lentiviral overexpression and silencing vectors, immunoprecipitation, modified proteomics, immunofluorescence, ChIP-PCR, EdU assay, Transwell assay, and scratch assay to investigate the effects of AKT1-induced Notch1 phosphorylation on cell proliferation, invasion and migration in vitro, as well as growth and epithelial-mesenchymal transition (EMT) in vivo.
Methods Mol Biol
December 2024
Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
YAP is a central regulator of the Hippo-YAP signaling axis, an evolutionarily conserved pathway that modulates organ growth and regeneration. Dysregulation of YAP signaling leads to uncontrolled proliferation, promoting epithelial-to-mesenchymal transition and invasion in cancer metastasis. Exogenous manipulation of YAP activity at the second-to-minute timescale is an important step in studying the signaling pathway.
View Article and Find Full Text PDFMol Biol Rep
December 2024
The Affiliated Loudi Hospital, Hengyang Medical School, University of South China, Loudi, Hunan, 417000, China.
Background: Premature ovarian insufficiency (POI) is a refractory disease that severely affects female fertility. The PERK/eIF-2α/ATF4/CHOP pathway is one of the classical pathways involved in the unfolded protein response to endoplasmic reticulum stress by regulating protein synthesis and promoting apoptosis. This study aimed to investigate the functional role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in the POI animal model through the PERK/eIF-2α/ATF4/CHOP pathway.
View Article and Find Full Text PDFPlant Biotechnol J
December 2024
BioSystems Design Lab, Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea.
Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in Nicotiana tabacum. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via Agrobacterium-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
December 2024
Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
Background: FOXF2 was reported to involve in a variety of biological behaviors that include the development of the central nervous system, tissue homeostasis, epithelia-mesenchymal interactions, regulation of embryonic development, and organogenesis.
Purpose: Understanding how FOXF2 influences the growth and development of cancer could provide valuable insights for researchers to develop novel therapeutic strategies.
Results: In this review, we investigate the underlying impact of FOXF2 on tumor cells, including the transformation of cellular phenotype, capacity for migration, invasion, and proliferation, colonization of circulating cells, and formation of metastatic nodules.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!