Background: Abdominal aortic aneurysm (AAA) is a serious life-threatening vascular disease, and its ferroptosis/cuproptosis markers have not yet been characterized. This study was aiming to identify markers associated with ferroptosis/cuproptosis in AAA by bioinformatics analysis combined with machine learning models and to perform experimental validation.

Methods: This study used three scRNA-seq datasets from different mouse models and a human PBMC bulk RNA-seq dataset. Candidate genes were identified by integrated analysis of scRNA-seq, cell communication analysis, monocle pseudo-time analysis, and hdWGCNA analysis. Four machine learning algorithms, LASSO, REF, RF and SVM, were used to construct a prediction model for the PBMC dataset, the above results were comprehensively analyzed, and the targets were confirmed by RT-qPCR.

Results: scRNA-seq analysis showed Mo/MF as the most sensitive cell type to AAA, and 34 cuproptosis associated ferroptosis genes were obtained. Pseudo-time series analysis, hdWGCNA and machine learning prediction model construction were performed on these genes. Subsequent comparison of the above results showed that only PIM1 appeared in all algorithms. RT-qPCR and western blot results were consistent with sequencing results, showing that PIM1 was significantly upregulated in AAA.

Conclusion: In a conclusion, PIM1 as a novel biomarker associated with cuproptosis/ferroptosis in AAA was highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668634PMC
http://dx.doi.org/10.3389/fimmu.2024.1486209DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning algorithms
8
biomarker associated
8
abdominal aortic
8
aortic aneurysm
8
analysis hdwgcna
8
prediction model
8
analysis
7
integration bulk/scrna-seq
4
bulk/scrna-seq multiple
4

Similar Publications

Article Title: Machine Learning Models for Pancreatic Cancer Risk Prediction Using Electronic Health Record Data-A Systematic Review and Assessment.

View Article and Find Full Text PDF

Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques.

Invest Radiol

October 2024

From the Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan (A.H., S.K., J.K., M.N., W.U., S.F., T.A., A.W., K.K., S.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (A.H., M.N., S.F.); Polytechnique Montréal, Montreal, Quebec, Canada (S.N.); Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada (S.N.); and Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia (S.N.).

The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases.

View Article and Find Full Text PDF

Study Question: How can we best achieve tissue segmentation and cell counting of multichannel-stained endometriosis sections to understand tissue composition?

Summary Answer: A combination of a machine learning-based tissue analysis software for tissue segmentation and a deep learning-based algorithm for segmentation-independent cell identification shows strong performance on the automated histological analysis of endometriosis sections.

What Is Known Already: Endometriosis is characterized by the complex interplay of various cell types and exhibits great variation between patients and endometriosis subtypes.

Study Design, Size, Duration: Endometriosis tissue samples of eight patients of different subtypes were obtained during surgery.

View Article and Find Full Text PDF

Integrating machine learning and remote sensing for long-term monitoring of chlorophyll-a in Chilika Lagoon, India.

Environ Monit Assess

December 2024

Department of Forest, Environment, and Climate Change, Chilika Development Authority, Barkul, Odisha, India.

Chlorophyll-a (Chla) is recognized as a key indicator of water quality and ecological health in aquatic ecosystems, offering valuable insights into ecosystem dynamics and changes over time. This study aimed to to develop and validate a robust ML model for estimating Chla using Landsat data, produce a time series of Chl a maps, and analyze the spatiotemporal variability of Chla in Chilika Lagoon, Asia's largest brackish water lagoon. Nine ML regression models, including Extreme Gradient Boost, Support Vector Regression, Random Forest, and Bagging Regression, were evaluated using Landsat imagery and field data.

View Article and Find Full Text PDF

The study delved into an extensive assessment of outdoor air pollutant levels, focusing specifically on PM, SO, NO, and CO, across the Mashhad metropolis from 2017 to 2021. In tandem, it explored their intricate correlations with meteorological conditions and the consequent health risks posed. Employing EPA health risk assessment methods, the research delved into the implications of pollutant exposure on human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!