Chronic wounds in diabetic patients experience significant clinical challenges due to compromised healing processes. Hypoxia-inducible factor-1 alpha (HIF-1α) is a critical regulator in the cellular response to hypoxia, enhancing angiogenesis and tissue restoration. Nevertheless, the cellular response to the developed chronic hypoxia within diabetes is impaired, likely due to the destabilization of HIF-1α via degradation by prolyl hydroxylase domain (PHD) enzymes. Researchers have extensively explored HIF-1α activation as a potential pathway for diabetic wound management, focusing mainly on deferoxamine (DFO) as a potent agent to stabilize HIF-1α. This review provides an update of the other recent pharmacological agents managing HIF-1α activation, including novel PHD inhibitors (roxadustat and daprodustat) and Von Hippel-Lindau protein (VHL) antagonists, which could be potential alternatives for the local treatment of diabetic wounds. Furthermore, it highlights how localized delivery via advanced nanostructures can enhance the efficacy of these novel therapies. Importantly, by addressing these points, the current review can offer a promising area for research. Given that, these novel drugs have minimal applications in diabetic wound healing, particularly in the context of local application through nanomaterials. This gap presents an exciting opportunity for further investigation, as combining these drugs with localized nanotechnology could avoid undesired systemic side effects and sustain drug release within wound site, offering a transformative platform for diabetes wound treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669355PMC
http://dx.doi.org/10.2147/IJN.S497041DOI Listing

Publication Analysis

Top Keywords

diabetic wound
12
hypoxia-inducible factor-1
8
factor-1 alpha
8
wound management
8
cellular response
8
hif-1α activation
8
diabetic
5
wound
5
hif-1α
5
nanoscale systems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!