Bacterial blight in pomegranate, caused by pv. (Xcp), is one of the most devastating diseases, leading to substantial economic losses in pomegranate production. Methods for blight management in pomegranate production are scarce and not well established. To date, the major control strategy is targeting the pathogen with antibiotics and copper-based compounds. However, excessive use of antibiotics has resulted in the development of antibiotic resistance in the field population of Xcp. Hence, as a means of eco-friendly and sustainable management of bacterial blight, the use of native endophytes was investigated under field conditions in the current study. Endophytic bacteria were isolated from micro-propagated nodal explants of pomegranate and were identified as , , and . They were found to produce volatiles that inhibited Xcp growth during antibiosis assay. GC-MS-based volatile profiling revealed the presence of several bioactive compounds with reported antimicrobial activities. These endophytes (CFU of 10/mL) were then spray-inoculated on leaves of 6-month-old pomegranate plants in the polyhouse. They were found to induce ROS-scavenging enzymes such as catalase and peroxidase. This alteration was a manifestation of host tissue colonization by the endophytes as ROS scavenging is one of the mechanisms by which endophytes colonize the host plants. Furthermore, two-season field trials with endophytes for blight control resulted in a reduction of disease index by 47-68%, which was considerably higher than the reduction due to the chemical immune modulator (2-bromo-2-nitro-1, 3-propanediol) currently being recommended for blight control. In addition, these endophytes also exhibited reduced sensitivity to this immune modulator; thus, the current study advocates the use of , , and as biocontrol agents for bacterial blight of pomegranate either alone or as a part of integrated disease management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668753 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1491124 | DOI Listing |
Plant Dis
December 2024
Clemson University - EREC, Plant and Environmental Sciences, 64 Research Road, Blackville, South Carolina, United States, 29817;
Glossy abelia (Abelia × grandiflora) is an evergreen ornamental shrub used in landscaping globally. From Jun. 2023 to Feb.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
Bacterial leaf blight (BLB) caused by pv. () has shown a high incidence rate in rice fields in recent years. Rice resistance breeding is considered as the most effective method for achieving economical and sustainable management of BLB disease.
View Article and Find Full Text PDFSci Rep
December 2024
Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura, 35516, Egypt.
The rice plant is one of the most significant crops in the world, and it suffers from various diseases. The traditional methods for rice disease detection are complex and time-consuming, mainly depending on the expert's experience. The explosive growth in image processing, computer vision, and deep learning techniques provides effective and innovative agriculture solutions for automatically detecting and classifying these diseases.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
Background: Fire blight, caused by Erwinia amylovora, poses a significant threat to global agriculture, with antibiotic-resistant strains necessitating alternative solutions such as phage therapy. Scaling phage therapy to an industrial level requires efficient mass-production methods, particularly in optimizing the seed culture process. In this study, we investigated large-scale E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!