Maple syrup urine disease (MSUD) is an inborn error of metabolism characterized by the accumulation of branched-chain amino acids (leucine, isoleucine, and valine) caused by a defect in the branched-chain alpha-keto acid dehydrogenase complex. Liver transplant is an effective therapy for MSUD, and patients can usually tolerate a regular diet after transplant without symptomatic metabolic decompensation. Most post-transplant patients do not follow a sick-day diet. We report a case of a 7-year-old male with MSUD Type IA, status post-liver transplant at 2 years of age, who presented with profound encephalopathy following poor oral intake and vomiting for 3 days. Broad laboratory workup was significant for hyperleucinosis and an unrevealing infectious workup. We conducted a review of eight post-liver transplant MSUD patients followed at Washington University in St. Louis. The review revealed that plasma amino acids were generally not checked during intercurrent illnesses in this patient cohort. While most of our patients have not had documented encephalopathy, one of the patients with epilepsy had a seizure during a gastrointestinal illness. Based on the review of the literature and from our center's experience, acute metabolic decompensation with intercurrent illnesses in MSUD patients after liver transplant appears to be rare. This case report raises awareness that patients with MSUD are still at risk of developing metabolic crisis post-liver transplant and provides additional insight into the risk factors associated with metabolic decompensation in this patient cohort.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667767PMC
http://dx.doi.org/10.1002/jmd2.12460DOI Listing

Publication Analysis

Top Keywords

metabolic decompensation
16
liver transplant
12
msud patients
12
post-liver transplant
12
acute metabolic
8
maple syrup
8
syrup urine
8
urine disease
8
amino acids
8
intercurrent illnesses
8

Similar Publications

Metabolic Dysfunction-Associated Steatotic Liver Disease.

Ann Intern Med

January 2025

Department of Medicine, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (S.M.J.A., M.L.).

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease in the United States. It is characterized by steatosis in the liver and is potentially reversible. Risk factors include obesity, type 2 mellitus, and other metabolic disorders.

View Article and Find Full Text PDF

Mitochondrial HMG-CoA synthase deficiency.

Mol Genet Metab

January 2025

Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium. Electronic address:

Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) deficiency is a rare, potentially life-threatening autosomal recessive disorder resulting from mutations in the HMGCS2 gene, leading to impaired ketogenesis. We systematically reviewed the clinical presentations, biochemical and genetic abnormalities in 93 reported cases and 2 new patients diagnosed based on biochemical findings. Reported onset ages ranged from 3 months to 6 years, mostly before the age of 3.

View Article and Find Full Text PDF

Background And Aims: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) have demonstrated long-term liver benefits in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes (T2D). However, no direct comparison between these therapies has been conducted. This study aimed to compare major adverse liver outcomes (MALOs) between GLP-1 RAs and SGLT2is in patients with MASLD and T2D.

View Article and Find Full Text PDF

Formation of I+III supercomplex rescues respiratory chain defects.

Cell Metab

January 2025

Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore. Electronic address:

Mitochondrial electron transport chain (ETC) complexes partition between free complexes and quaternary assemblies known as supercomplexes (SCs). However, the physiological requirement for SCs and the mechanisms regulating their formation remain controversial. Here, we show that genetic perturbations in mammalian ETC complex III (CIII) biogenesis stimulate the formation of a specialized extra-large SC (SC-XL) with a structure of I+III, resolved at 3.

View Article and Find Full Text PDF

Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) has a global prevalence of 25%. Studies on incident liver and cardiovascular outcomes in lean (Body mass index: BMI < 25 kg/m, or < 23 kg/m for Asians) vs. non-lean individuals with MASLD have reported mixed results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!