Photosensitizers and pigments in raw meat such as porphyrins, riboflavin, and myoglobin after incorporation with light beam prompt the generation of singlet oxygen (O) from triplet oxygen (O) and cause oxidative rancidity of meat products. In this study, the results of photooxidation reactions of sheep erythrocyte (red blood cell) model as a model rich in hemoglobin and phospholipids bilayer, and oleic acid model were obtained by H NMR spectroscopy, TBARS assay, and iodometric titration. In both models, the rate of lipid photooxidation in the presence of hydroalcoholic extracts of Turmeric ( L.) and Cumin ( L.) as natural antioxidants, Butyl hydroxytoluene (BHT) as a synthetic antioxidant, and sodium azide (NaN) as a well-known O scavenger were decreased in the order of NaN > Turmeric > Cumin > BHT. It was proven that during the photooxidation process, there is a direct association between the amount of flavonoid compounds and O scavenging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666813PMC
http://dx.doi.org/10.1002/fsn3.4539DOI Listing

Publication Analysis

Top Keywords

flavonoid compounds
8
red blood
8
oleic acid
8
photooxidation
5
suppressing flavonoid
4
compounds lipids
4
lipids photooxidation
4
photooxidation sheep
4
sheep red
4
blood cells
4

Similar Publications

Mushrooms have proven to be a valuable source of diverse bioactive compounds that can hold substantial potential for preventing and managing various diseases. This research focused on examining the numerous bioactive compounds found in () (Cooke & Massee) Priest mushrooms, particularly those obtained from ethyl acetate and dichloromethane extracts. Polyphenols, flavonoids, tannins, and alkaloids were also evaluated by chemical analysis.

View Article and Find Full Text PDF

Construction and Optimization of Engineered for Synthesis of Phloretin and Its Derivatives.

J Agric Food Chem

December 2024

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China.

Phloretin and its derivatives are dihydrochalcone compounds with diverse pharmacological properties and biological activities, offering significant potential for applications in the food and pharmaceutical industries. Due to their structural similarity to flavonoids, their extraction and isolation were highly challenging. Although the biosynthesis of phloretin via three distinct pathways has been reported, a systematic comparison within the same host has yet to be conducted.

View Article and Find Full Text PDF

Viral infections trigger the integrated stress response (ISR) in eukaryotic cells that leads to the activation of eIF2α kinases, the elevation of eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, and thereby the shutdown of global protein synthesis that viruses rely on to replicate. Coronaviruses and other viruses have evolved various subversion mechanisms to counteract the antiviral ISR. These intricate host-virus interactions may be exploited by pharmacologically activating the host ISR for the development of host-directed antivirals (HDAs), an increasingly relevant area of research.

View Article and Find Full Text PDF

The aim of this investigation was to comparatively assess the antioxidant and polyphenol compounds in fresh moringa pods sourced from two different regions in Australia, namely Queensland (QLD) and Western Australia (WAU). Total polyphenol content varied between 1.64 and 5.

View Article and Find Full Text PDF

Adding plant extracts to sausage and other meat products is very important to improve their quality, safety, and durability. The aim of this study was to evaluate the microbiological properties of beef sausage enriched with roselle ( L.) sepal extract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!