Molecular characteristics of emulsifiers such as their molecular weight (MW) and surface charge, not only affect the stability of the emulsion but also can have an impact on its capacity to either inhibit or promote microbial proliferation. These characteristics can affect the behavior of pathogens such as Typhimurium in emulsion systems. The growth and thermal resistance of . Typhimurium were monitored at different oil content levels (20%, 40%, and 60%) in emulsions stabilized by three whey protein-based emulsifiers: whey protein isolate (WPI), whey protein hydrolysate (WPH), and a modified WPI with an alteration of charge (WPI). Our study revealed that emulsifier itself with different MW and surface charge had no effect on bacterial growth and inactivation without oil inclusion ( > 0.05). However, it was found that higher bacterial growth rate at 60% oil content emulsion stabilized with WPI (0.65 ± 0.03 log CFU/h) than WPI (0.19 ± 0.04 log CFU/h), which showed the charge of emulsifiers has different effects on microbial dynamics in oil-in-water emulsion. Interestingly, WPI in emulsions also seemed to convey protection against thermal inactivation of bacteria. These data describe a complex interrelationship between the physicochemical characteristics of the emulsifier and its interacting nature with bacterial cells. They throw even more light on the insight about the importance of a strategic approach toward emulsifier selection in food formulations. This is crucial for the food safety and stability of products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666915 | PMC |
http://dx.doi.org/10.1002/fsn3.4569 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!