Understanding the molecular signaling pathways of colorectal cancer (CRC) can be accepted as the first step in treatment strategy. Permanent mTOR signaling activation stimulates the CRC process via various biological processes. It supplies the survival of CRC stem cells, tumorigenesis, morbidity, and decreased response to drugs in CRC pathogenesis. Therefore, inhibition of the mTOR signaling by numerous bioactive components may be effective against CRC. The study aims to discuss the therapeutic capacity of various polyphenols, terpenoids, and alkaloids on CRC via the PI3K/Akt/mTOR pathway. The potential molecular effects of bioactive compounds on the mTOR pathway's upstream and downstream targets are examined. Each bioactive component causes various physiological processes, such as triggering free radical production, disruption of mitochondrial membrane potential, cell cycle arrest, inhibition of CRC stem cell migration, and suppression of glycolysis through mTOR signaling inhibition. As a result, carcinogenesis is inhibited by inducing apoptosis and autophagy. However, it should be noted that studies are primarily in vitro dose-dependent treatment researchers. This study raises awareness about the role of phenolic compounds in treating CRC, contributing to their future use as anticancer agents. These bioactive compounds have the potential to be developed into food supplementation to prevent and treat various cancer types including CRC. This review has the potential to lead to further development of clinical studies. In the future, mTOR inhibition by applying several bioactive agents using advanced drug delivery systems may contribute to CRC treatment with 3D cell culture and in vivo clinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666977PMC
http://dx.doi.org/10.1002/fsn3.4534DOI Listing

Publication Analysis

Top Keywords

bioactive compounds
12
mtor signaling
12
crc
10
effects bioactive
8
colorectal cancer
8
crc stem
8
clinical studies
8
bioactive
6
signaling
5
mtor
5

Similar Publications

Mushrooms have proven to be a valuable source of diverse bioactive compounds that can hold substantial potential for preventing and managing various diseases. This research focused on examining the numerous bioactive compounds found in () (Cooke & Massee) Priest mushrooms, particularly those obtained from ethyl acetate and dichloromethane extracts. Polyphenols, flavonoids, tannins, and alkaloids were also evaluated by chemical analysis.

View Article and Find Full Text PDF

Design, Synthesis, and Fungicidal Activity of α-Methylene-γ-Butyrolactone Derivatives Bearing a Diphenyl Ether Moiety.

J Agric Food Chem

December 2024

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.

The γ-butyrolactone scaffold, commonly present in natural products and bioactive compounds, has played a crucial role in the development of novel pesticides. In this study, a series of α-methylene-γ-butyrolactone derivatives containing a diphenyl ether moiety were designed and synthesized using the scaffold splicing strategy. Bioassays revealed that several target compounds demonstrated potent fungicidal activities, particularly against and .

View Article and Find Full Text PDF

Aim: Emerging resistance among pathogens necessitates the development of novel antimicrobial agents. As a result, we aimed to synthesize new coumarins and study their antimicrobial activity with the hope of obtaining effective drugs.

Method: A series of coumarins were synthesized, characterized, and assessed for antimicrobial activity using broth microdilution and agar diffusion methods against Gram-positive (), Gram-negative () bacteria, and fungi ().

View Article and Find Full Text PDF
Article Synopsis
  • Bacterial blight in pomegranate, caused by Xanthomonas citri pv. punicae (Xcp), is a major issue leading to significant economic losses, with current management primarily relying on antibiotics and copper-based treatments.
  • The excessive use of antibiotics has led to antibiotic resistance, prompting research into eco-friendly alternatives like native endophytes, which are beneficial bacteria isolated from pomegranate plants that can inhibit Xcp growth through the production of antimicrobial volatiles.
  • Field trials showed that using these endophytes reduced the disease index by 47-68%, outperforming traditional chemical treatments, making them promising candidates for sustainable bacterial blight management in pomegranate cultivation.
View Article and Find Full Text PDF

Pomegranate is one of the most popular fruits worldwide, and it is important to maintain the overall quality and bioaccessibility of freshly squeezed pomegranate juices (PJS). The adverse effects of heat treatment on sensory properties and phytochemicals encourage the use of non-thermal processes in the juice industry. Hereby, the effects of high-pressure homogenization (HPH) (50, 100, and 150 MPa) on the physicochemical properties, antimicrobial activity, in vitro bioaccessibility, and antioxidant capacity of freshly-squeezed PJS from different genotypes were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!