To clarify the effect of the fluorine atom and piperazine ring on norfloxacin (NOR), NOR degradation products (NOR-DPs, P1-P8) were generated via UV combined with hydrogen peroxide (UV/HO) technology. NOR degradation did not significantly affect cytotoxicity of NOR against BV2, A549, HepG2, and Vero E6 cells. Compared with that of NOR, mutagenicity and median lethal concentration of P1-P8 in fathead minnow were increased, and bioaccumulation factor and oral median lethal dose of P1-P8 in rats were decreased. Molecular docking was used to evaluate the inhibitory effect of DNA gyrase A (gyrA) on NOR-DPs to determine the molecular-level mechanism and establish the structure-activity relationship. Results indicated that the most common amino acid residues were Ile13, Ser27, Val28, Gly31, Asp36, Arg46, Arg47, Asp157, and Gly340; hydrogen bonds and hydrophobic interactions played key roles in the inhibitory effect. Binding area (BA) decreased from 350.80 Å (NOR) to 346.21 Å (P1), and the absolute value of binding energy (|BE|) changed from 2.53 kcal/mol (NOR) to 2.54 kcal/mol (P1), indicating that the fluorine atom mainly affects BA. The piperazine ring clearly influenced BA and |BE|. "Yang ChuanXi Rules" were used to explain effects of molecular weight (MW), BA, |BE|, and sum of η + η (η: normalization of BA, η: normalization of |BE|) and predict biotoxicity of NOR-DPs based on half-maximum inhibitory concentration (IC), half-minimal inhibitory concentration (MIC), and half-minimal bactericidal concentration (MBC) values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667292PMC
http://dx.doi.org/10.1021/envhealth.4c00095DOI Listing

Publication Analysis

Top Keywords

fluorine atom
8
atom piperazine
8
piperazine ring
8
median lethal
8
inhibitory concentration
8
fluorine atoms
4
atoms piperazine
4
piperazine rings
4
rings biotoxicity
4
biotoxicity norfloxacin
4

Similar Publications

Organic photovoltaic materials that can be processed via non-halogenated solvents are crucial for the large-area manufacturing of organic solar cells (OSCs). However, the limited available of electron acceptors with adequate solubility and favorable molecular packing presents a challenge in achieving efficient non-halogenated solvent-processed OSCs. Herein, inspired by the three-dimensional dimeric acceptor CH8-4, we employed a molecular isomerization strategy to synthesize its isomers, CH8-4A and CH8-4B, by tuning the position of fluorine (F) atom in the central unit.

View Article and Find Full Text PDF

To clarify the effect of the fluorine atom and piperazine ring on norfloxacin (NOR), NOR degradation products (NOR-DPs, P1-P8) were generated via UV combined with hydrogen peroxide (UV/HO) technology. NOR degradation did not significantly affect cytotoxicity of NOR against BV2, A549, HepG2, and Vero E6 cells. Compared with that of NOR, mutagenicity and median lethal concentration of P1-P8 in fathead minnow were increased, and bioaccumulation factor and oral median lethal dose of P1-P8 in rats were decreased.

View Article and Find Full Text PDF

Dental enamel is subjected to a lifetime of de- and re-mineralization cycles in the oral environment, the cumulative effects of which cause embrittlement with age. However, the understanding of atomic scale mechanisms of dental enamel aging is still at its infancy, particularly regarding where compositional differences occur in the hydroxyapatite nanocrystals and what underlying mechanisms might be responsible. Here, we use atom probe tomography to compare enamel from a young (22 years old) and a senior (56 years old) adult donor tooth.

View Article and Find Full Text PDF

Constructing Atomic Tungsten-Based Solid Frustrated-Lewis-Pair Sites with d-p Interactions for Selective CO Photoreduction.

J Am Chem Soc

December 2024

State Key Laboratory of Fluorine & Nitrogen Chemicals, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

Solid frustrated Lewis pair (FLP) shows remarkable advantages in the activation of small molecules such as CO, owing to the strong orbital interactions between FLP sites and reactant molecules. However, most of the currently constructed FLP sites are randomly distributed and easily reunited on the surface of catalysts, resulting in a low utilization rate of FLP sites. Herein, atomic tungsten-based FLP (N···W FLP) sites are constructed for photocatalytic CO conversion through introducing W single-atoms into polymeric carbon nitride.

View Article and Find Full Text PDF

The heme paradigm where Fe=O acts as the C-H oxidant and Fe-OH rebounds with the formed carbon-centered radical guides the design of the prototypical synthetic hydroxylation catalyst. We are exploring methods to evolve beyond the metal-oxo oxidant and hydroxide rebound, to incorporate a wider array of functional group. We have demonstrated the application of CoII(OTf)2 (10 mol% catalyst; OTf = trimfluoromethanesulfonate) in combination with polydentate N-donor ligands (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!