Oxygen vacancies in Ruddlesden-Popper (RP) perovskites (PV) [AO][ABO] play a pivotal role in engineering functional properties and thus understanding the relationship between oxygen-vacancy distribution and physical properties can open up new strategies for fine manipulation of structure-driven functionalities. However, the structural origin of preferential distribution for oxygen vacancies in RP structures is not well understood, notably in the single-layer ( = 1) RP-structure. Herein, the = 1 RP phase SrNdZnO was rationally designed and structurally characterized by combining three-dimensional (3D) electron diffraction and neutron powder diffraction. SrNdZnO adopts a novel 2-fold = 1 RP-type -superstructure due to the concurrence of A-site column ordering and oxygen-vacancy array ordering. These two ordering models are inextricably linked, and disrupting one would thus destroy the other. Oxygen vacancies are structurally confined to occupy the equatorial sites of "BO"-octahedra, in stark contrast to the preferential occupation of the inner apical sites in ≥ 2 structures. Such a layer-dependent oxygen-vacancy distribution in RP structures is in fact dictated by the reduction of the cationic A-A/B repulsion. Moreover, the intrinsic oxygen vacancies can capture atmospheric O, consequently resulting in a mixed oxide ion and p-type electrical conductivity of 1.0 × 10 S cm at temperatures > 800 °C. This value could be further enhanced to > 1.0 × 10 S cm by creating additional oxygen vacancies on the equatorial sites through acceptor doping. Bond valence site energy analysis indicates that the oxide ion conduction in SrNdZnO is predominated by the one-dimensional pathways along the [ZnO] ladders and is triggered by the gate-control-like migration of the equatorial bridging oxygens to the oxygen-vacant sites. Our results demonstrate that control of anion and cation ordering in RP perovskites opens a new path toward innovative structure-driven property design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667834PMC
http://dx.doi.org/10.1039/d4sc05323kDOI Listing

Publication Analysis

Top Keywords

oxygen vacancies
20
oxygen-vacancy distribution
8
equatorial sites
8
oxide ion
8
ordering
5
oxygen
5
vacancies
5
interplay a-site
4
oxygen-vacancy
4
a-site oxygen-vacancy
4

Similar Publications

A solution-gated indium-tin-oxide (ITO)-based field effect transistor (FET) without interfaces among the source, channel, and drain electrodes, which is called the one-piece ITO-FET, can be simply fabricated from a single sheet of ITO by etching the channel region. The direct contact of the ITO channel surface with a sample solution contributes to a steep subthreshold slope and a high on/off ratio. In this study, we have examined the effects of oxygen vacancies and hydroxy groups at the ITO channel surface on the electrical characteristics of the one-piece ITO-FET.

View Article and Find Full Text PDF

Nitrogen vacancy mediated g-CN/BiVO Z-scheme heterostructure nanostructures for exceptional photocatalytic performance.

Environ Res

December 2024

School of Materials and Chemistry, Analytical and Testing Center, Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang, 621010, China. Electronic address:

In this work, a novel V-g-CN/BiVO (V-CN/BVO) Z-scheme heterojunction photocatalyst was formed by introducing nitrogen vacancies (V) and constructing heterojunction, which is able to efficiently degrade the representative contaminant rhodamine B (RhB) upon exposure to visible-light, resulting in an outstanding degradation rate of 98.91% of RhB within 30 min. This photocatalyst exhibits catalytic universality and allows the degradation of methylene blue (MB, 97.

View Article and Find Full Text PDF

Novel metal oxides partially derived perovskite-structured hydroxides for room temperature trace NO gas sensors under UV irradiation.

Talanta

December 2024

Key Laboratory of Applied Chemistry and Nanotechnology at University of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China. Electronic address:

Perovskite-structured materials are used as gas-sensitive materials due to their wide bandgap and controllable morphology, but large initial resistance and low response limit their development. In this work, ZnSn(OH)/ZnO composites derived from ZnO were synthesized by hydrothermal method. The gas-sensitive results show that all sensors show significantly improved response to NO under UV irradiation compared with without UV irradiation.

View Article and Find Full Text PDF

Oxygen vacancies in Ruddlesden-Popper (RP) perovskites (PV) [AO][ABO] play a pivotal role in engineering functional properties and thus understanding the relationship between oxygen-vacancy distribution and physical properties can open up new strategies for fine manipulation of structure-driven functionalities. However, the structural origin of preferential distribution for oxygen vacancies in RP structures is not well understood, notably in the single-layer ( = 1) RP-structure. Herein, the = 1 RP phase SrNdZnO was rationally designed and structurally characterized by combining three-dimensional (3D) electron diffraction and neutron powder diffraction.

View Article and Find Full Text PDF

Cataluminescence Sensor Based on Halloysite Nanotubes/MgO Nanocomposite for Rapid Detection of Ether.

Luminescence

December 2024

Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China.

MgO surface makes it easy to introduce a certain amount of oxygen vacancy and can enhance catalytic reaction activity. Besides, as a silicoaluminate mineral material, halloysite nanotube (HNT) has a unique tubular structure. In this paper, the HNTs@MgO composite was successfully synthesized based on natural clay material HNTs as a carrier, and the CTL sensor based on HNTs@MgO was successfully developed for the rapid determination of ether in air.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!