Halogenated organic pollutants (HOPs) have attracted considerable attention owing to their persistence, bioaccumulation, and toxicity. The development of methods to detect HOPs in fish is challenging owing to the compositional complexity of fish matrices, which contain high levels of lipids and relatively low concentrations of HOPs. In addition, the lipophilicity of most HOPs renders their extraction difficult. Moreover, the simultaneous determination of multiple HOPs to achieve the high-throughput screening of these analytes is complex. In this study, a reliable and efficient pretreatment method based on ultrasound-assisted extraction, gel permeation chromatography purification, and ultra performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was developed for the determination of 12 HOPs in edible fish. The procedures of sample extraction and purification and LC-HRMS detection parameters were optimized to improve the performance of the method. Fresh fish samples were thoroughly rinsed with water, and non-edible parts, including the skin, bones, and phosphorus, were removed. The fish were weighed, cut into small pieces, and vacuum freeze-dried for 48 h. Subsequently, a freeze grinder was used to grind the dried fish into a fine powder. Exactly 2 g of the fish powder was weighed, fortified with isotope-labeled internal standards of the HOPs, and allowed to stand for 5 min. Methanol-acetonitrile (1∶1, v/v) was then added, followed by vortex mixing and ultrasonication. After centrifugation, the supernatant was transferred to a fresh tube. The extraction process was repeated twice and all extracts were combined. The extract was evaporated under a gentle nitrogen flow and redissolved in a mixture of ethyl acetate-cyclohexane (1∶1, v/v). The sample mixture was cleaned using gel permeation chromatography, and the eluate was collected and concentrated under a nitrogen flow. Sample residuals were reconstituted with water-methanol (1∶1, v/v) prior to instrumental analysis. Chromatographic separation was performed using an ACQUITY UPLC BEH C18 column (100 mm×2.1 mm, 1.7 μm). Water containing 2 mmol/L NHAc and acetonitrile were used as the mobile phases, and an optimized gradient elution program was applied. Isotope dilution and an internal standard method were used to quantify the HOPs. An electrospray ionization source operated in negative mode was applied to ionize the HOPs, and a full scan together with data-dependent acquisition (DDA) was applied for HRMS. Excellent linearities (>0.99) were obtained for all HOPs in the quantification range of 1.0-1000.0 ng/mL. The limits of quantification were 0.5 ng/g. The analytical method was validated using pooled fish samples fortified with HOP standards (4, 40, and 400 ng/g). The recoveries of the HOPs were in the range of 67.6%-133.8%, and the corresponding RSDs were 0.5%-15.6%. A total of 27 commercially available fish samples were analyzed using the developed method, and the results revealed the presence of HOPs in the fish, indicating the practicability of the method for real-world samples. The developed method is rapid, accurate, precise, and suitable for detecting HOPs in fish. This study provides a useful approach for environmental monitoring and food safety assurance by enabling the accurate and efficient analysis of HOPs in commonly consumed fish. Given increasing global concerns over HOPs, the method developed in this study will provide practical technical support for consumers aiming to reduce their exposure to and the adverse impacts of HOPs via fish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686473PMC
http://dx.doi.org/10.3724/SP.J.1123.2023.12028DOI Listing

Publication Analysis

Top Keywords

hops
16
hops fish
16
fish
14
gel permeation
12
permeation chromatography
12
fish samples
12
1∶1 v/v
12
halogenated organic
8
organic pollutants
8
edible fish
8

Similar Publications

Predicting in vivo concentrations of dietary hop phytoestrogens by physiologically based kinetic modeling.

Food Chem Toxicol

January 2025

Department of Health Sciences and Technology, ETH Zurich, Switzerland. Electronic address:

Hop extracts containing prenylated polyphenols such as 8-prenylnaringenin (8-PN) and its precursor isoxanthohumol (iXN) are popular among women seeking natural alternatives to hormone therapy for postmenopausal symptoms. Due to structural similarities with estrogens, these compounds act as estrogen receptor agonists. Especially 8-PN, described as the most potent phytoestrogen known to date, poses a potential risk for endocrine disruption.

View Article and Find Full Text PDF

Distribution of microbial taxa and genes degrading halogenated organic pollutants in the mangroves.

J Hazard Mater

January 2025

Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China. Electronic address:

Anthropogenic activities have led to serious contamination of halogenated organic pollutants (HOPs), such as PCBs, PBDEs, and HBCDs, in the mangrove wetland. Biodegradation of HOPs is generally driven by environmental microorganisms harboring dehalogenase genes. However, little is known if HOPs can affect the distributions of HOPs-degrading bacteria and dehalogenase genes in the mangrove wetlands.

View Article and Find Full Text PDF

Deacetylated SNAP47 recruits HOPS to facilitate autophagosome-lysosome fusion independent of STX17.

Nat Commun

January 2025

School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Autophagy, a conserved catabolic process implicated in a diverse array of human diseases, requires efficient fusion between autophagosomes and lysosomes to function effectively. Recently, SNAP47 has been identified as a key component of the dual-purpose SNARE complex mediating autophagosome-lysosome fusion in both bulk and selective autophagy. However, the spatiotemporal regulatory mechanisms of this SNARE complex remain unknown.

View Article and Find Full Text PDF

Microbial isolates from sugar crop processing facilities were tested for sensitivity to several industrial antimicrobial agents to determine optimal dosing. Hydritreat 2216 showed broad spectrum activity against all bacterial isolates as well as Saccharomyces cerevisiae. Sodium hypochlorite showed broad spectrum activity against all isolates, but at much higher effective concentrations.

View Article and Find Full Text PDF

Effect of Knee Joint Rotational Stability on Sport Performance After Anterior Cruciate Ligament Reconstruction.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

December 2024

Department of Sport and Rehabilitation Medicine,Beijing Chao-Yang Hospital, Capital Medical University,Beijing 100020,China.

Objective To investigate the effects of rotation stability after anterior cruciate ligament reconstruction (ACLR) on subjective outcomes,sport performance,psychological readiness,and return to sport. Methods The patients who underwent ACLR in the Sports Hospital,National Institute of Sports Medicine,General Administration of Sport of China from January 2015 to January 2021 were followed up during the period from November 2022 to December 2023.The patients were grouped according to the results of the pivot shift test (PST) of the affected knee at the last follow-up visit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!