[Research progress in biological activities and oocyte aging-regulating effect of EGCG].

Sheng Wu Gong Cheng Xue Bao

College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, Sichuan, China.

Published: December 2024

Epigallocatechin gallate (EGCG), the predominant polyphenol in green tea, exerts a spectrum of physiological activities, including antioxidant, anticancer, and anti-inflammatory effects. Emerging research underscores the significance of EGCG in modulating oocyte aging. EGCG can enhance antioxidant defenses, improve mitochondrial functions, and inhibit apoptotic pathways, thereby retarding the aging of oocytes. This review delineates the main molecular features of EGCG and expounds its regulatory mechanisms concerning oocyte aging, enriching the knowledge on the role of EGCG in the amelioration of oocyte aging.

Download full-text PDF

Source
http://dx.doi.org/10.13345/j.cjb.240192DOI Listing

Publication Analysis

Top Keywords

oocyte aging
12
egcg
5
[research progress
4
progress biological
4
biological activities
4
oocyte
4
activities oocyte
4
oocyte aging-regulating
4
aging-regulating egcg]
4
egcg] epigallocatechin
4

Similar Publications

[Research progress in biological activities and oocyte aging-regulating effect of EGCG].

Sheng Wu Gong Cheng Xue Bao

December 2024

College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, Sichuan, China.

Epigallocatechin gallate (EGCG), the predominant polyphenol in green tea, exerts a spectrum of physiological activities, including antioxidant, anticancer, and anti-inflammatory effects. Emerging research underscores the significance of EGCG in modulating oocyte aging. EGCG can enhance antioxidant defenses, improve mitochondrial functions, and inhibit apoptotic pathways, thereby retarding the aging of oocytes.

View Article and Find Full Text PDF

One of the major age-related declines in female reproductive function is the reduced quantity and quality of oocytes. Here we demonstrate that structural changes in the zona pellucida (ZP) were associated with decreased fertilization rates from 34- to 38-week-old female mice, equivalent to the mid-reproductive of human females. In middle-aged mouse ovaries, the decline in the number of transzonal projections was accompanied by a decrease in cumulus cell-oocyte interactions, resulting in a deterioration of the oocyte quality.

View Article and Find Full Text PDF

Mitochondria, cellular powerhouses, harbor DNA (mtDNA) inherited from the mothers. MtDNA mutations can cause diseases, yet whether they increase with age in human germline cells-oocytes-remains understudied. Here, using highly accurate duplex sequencing of full-length mtDNA, we detected mutations in single oocytes, blood, and saliva in women between 20 and 42 years of age.

View Article and Find Full Text PDF

Background: Primordial follicle activation is vital for the reproduction of women with advanced age and premature ovarian insufficiency (POI). But there is a lack of effective and safe therapeutic options to activate their primordial follicles in vivo. Berberine (BBR) possesses multiple pharmacological properties, but its impact on primordial follicle activation remains unclear.

View Article and Find Full Text PDF

Study Question: Which independent factors influence ICSI outcomes in patients with complete azoospermia factor c (AZFc) microdeletions?

Summary Answer: In patients with complete AZFc microdeletions, the sperm source, male LH, the type of infertility in women, and maternal age are the independent factors associated with ICSI outcomes.

What Is Known Already: AZF microdeletions are the second most prevalent factor contributing to infertility in men, with AZFc microdeletions being the most frequently affected locus, accounting for 60-70% of all cases. The primary clinical phenotypes are oligoasthenozoospermia and azoospermia in patients with complete AZFc microdeletions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!