The intricate regulatory mechanisms governing TGF-β1 expression play pivotal roles in tumor progression. Key proteins such as FKBP1A, SMAD6, and SMAD7 trigger this process, modulating cell growth inhibition via p15INK4b and p21CIP1 induction. Despite TGF-β's tumor-suppressive functions, cancer cells adeptly evade its effects, fueling disease advancement. Tumor microenvironmental TGF-β1 prompts epithelial-mesenchymal transition (EMT), facilitated by transcription factors like slug, twist-1, and snail. Notably, cancer-associated fibroblasts (CAFs) amplify this effect by secreting TGF-β1, fostering drug resistance. Of particular concern is the resistance observed with BRAF/MEK inhibitors (BRAFi/MEKi), highlighting the clinical significance of TGF-β signaling in cancer therapeutics. However, emerging interest in natural anti-cancer agents, with their distinct pharmacological actions on signaling proteins offers promising avenues for therapeutic intervention. This review emphasizes the multifaceted interplay between TGF-β signaling, tumor microenvironment dynamics, and therapeutic resistance mechanisms, illuminating potential targets for combating cancer progression by natural bioactive compounds. However, this review additionally explores the currently available advanced methods for detecting various types of cancer. Not only that, but it also discussed the function of plant-derived compounds in clinical aspects, as well as its limitations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2024.177218DOI Listing

Publication Analysis

Top Keywords

drug resistance
8
tgf-β signaling
8
cancer
5
deciphering tgf-β1's
4
tgf-β1's role
4
role drug
4
resistance
4
resistance leveraging
4
leveraging plant
4
plant bioactives
4

Similar Publications

Cannabinoids as cytotoxic agents and potential modulators of the human parasite Trichomonas vaginalis.

Biomed Pharmacother

December 2024

Structural Biology Laboratory, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro, Brazil. Electronic address:

Trichomoniasis, a globally prevalent sexually transmitted infection caused by Trichomonas vaginalis, affects approximately 278 million people each year. It presents a challenge due to resistance to the current treatment, Metronidazole (MTZ), which is also associated with side effects. Cannabis sativa, with more than 100 phytocannabinoids and numerous studies for therapeutic applications, including parasitic infections, has undergone a significant shift in acceptance worldwide, highlighted by legalizations and substantial revenue projections.

View Article and Find Full Text PDF

In recent years, the deep learning (DL) technique has rapidly developed and shown great success in scoring the protein-ligand binding affinities. The protein-ligand conformation optimization based on DL-derived scoring functions holds broad application prospects, for instance, drug design and enzyme engineering. In this study, we evaluated the robustness of a DL-based ligand conformation optimization protocol (DeepRMSD+Vina) for optimizing structures with input perturbations by examining the predicted ligand binding poses and scoring.

View Article and Find Full Text PDF

Objectives: Daily-use fluoride products are first-line protection against enamel wear from dietary-acid exposure (DAE). This study aimed to understand effects of fluoride concentration, fluoride salt, product form and ingredients in daily-use products on remineralisation and demineralisation, via network meta-analysis (NMA) of 14 studies using one well-established in-situ model. Remineralisation (surface-microhardness recovery, SHMR) after treatment, and protection against subsequent demineralisation (acid-resistance ratio, ARR) were measured.

View Article and Find Full Text PDF

Exploring the druggability of the UEV domain of human TSG101 in search for broad-spectrum antivirals.

Protein Sci

January 2025

Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.

The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.

View Article and Find Full Text PDF

Colorectal cancer (CRC) ranks as the third most common cancer worldwide and remains a major cause of cancer-related deaths, necessitating the development of innovative therapeutic approaches beyond conventional treatment modalities. Conventional therapies, such as radiation, chemotherapy, and surgery, are hindered by challenges like imprecise targeting, substantial toxicity, and the development of resistance. Exosome-driven nano-immunotherapy has emerged as a groundbreaking approach that leverages the natural properties of exosomes-cell-derived vesicles known for their role in intercellular communication-to deliver therapeutic agents with high precision and specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!