Due to its high concentration and persistence, microplastic (MP) pollution is a major threat to marine environments. Expanded polystyrene (EPS) particles are the most abundant MP type in Asian regions, including the Korean coastal region. Although many previous studies have reported the toxicity of MPs to marine biota, the toxicity of environmentally relevant MPs to coastal organisms is not well understood. Thus, we investigated the toxicity of EPS on the growth and energy metabolism of the juvenile marine isopods, Ligia cinerascens, obtained from a population that has been exposed to EPS through multiple generations. After 14 and 21 days of dietary EPS exposure, body weight and molting of L. cinerascens were unaffected. However, the energy reserves (carbohydrates, proteins, and lipids) were significantly reduced, resulting in a decrease in the total energy budget (E) by dietary EPS exposure. The transcriptional modulation patterns of genes related to energy metabolism suggested that dietary EPS exposure may increase the digestion of non-carbohydrate sources, such as proteins and lipids, to compensate for increased energy expenditure. Our findings suggest that dietary EPS exposure, although no toxic at the individual level, can reduce the energy status of juvenile marine isopods, which provides useful information on the toxic effects of environmentally relevant MPs to coastal ecosystem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpc.2024.110118 | DOI Listing |
Environ Pollut
January 2025
Department F.-A. Forel for Environmental and Aquatic Sciences, Section Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH, 1211, Geneva, Switzerland. Electronic address:
Silver nanoparticles (AgNPs) are increasingly used in various consumer products and industrial applications, raising concerns about their environmental impact on aquatic ecosystems. This study investigated the physicochemical stability, trophic transfer, and toxic effects of citrate-coated AgNPs in a freshwater food chain including the diatom Cyclotella meneghiniana and the gastropod Lymnaea stagnalis. AgNPs remained stable in the exposure medium, with a minimal dissolution (<0.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
December 2024
Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea. Electronic address:
Due to its high concentration and persistence, microplastic (MP) pollution is a major threat to marine environments. Expanded polystyrene (EPS) particles are the most abundant MP type in Asian regions, including the Korean coastal region. Although many previous studies have reported the toxicity of MPs to marine biota, the toxicity of environmentally relevant MPs to coastal organisms is not well understood.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:
Lactobacillus plantarum KX041 is a probiotics obtained from early screening, which can relieve inflammation and enrich the anti-obesity intestinal flora, and produce high yield of exopolysaccharides (EPS). The extraction, structure and physicochemical properties of EPS have been completed earlier. However, whether the functional activity of L.
View Article and Find Full Text PDFBiofilm
December 2024
Department of Preventive Dentistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea.
Bacterial biofilms are highly structured surface associated architecture of micro-colonies, which are strongly bonded with the exopolymeric matrix of their own synthesis. These exopolymeric substances, mainly exopolysaccharides (EPS) initially assist the bacterial adhesion and finally form a bridge over the microcolonies to protect them from environmental assaults and antimicrobial exposure. Bacterial cells in dental biofilm metabolize dietary carbohydrates and produce organic acids.
View Article and Find Full Text PDFFood Microbiol
March 2025
Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, 330045, China. Electronic address:
In the quest for a balanced diet and better health, the global shift towards nutrient-dense foods highlights the multiple roles of lactic acid bacteria exopolysaccharides (LAB-EPS) in improving food quality and health. This paper offers a comprehensive survey of LAB-EPS, focusing on their classification, biosynthesis pathways and application in the food industry, from dairy products to bakery products and meat. It highlights the impact of LAB-EPS on the texture and sensory qualities of food.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!