Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fish with unique life cycles offer valuable insights into retinal plasticity, revealing mechanisms of environmental adaptation, cell proliferation, and thus, potentially regeneration. The variability of the environmental factors to which Austrolebias annual fishes are exposed has acted as a strong selective pressure shaping traits such as nervous system plasticity. This has contributed to adaptation to their extreme conditions including the decreased luminosity as ponds dry out. In particular, the retina of A. charrua has been shown to respond to 30 days of decreased luminosity by exacerbating cell proliferation Now, we aimed to determine the cellular component of the retina involved in shorter-term responses. To this end, we performed 5-bromo-2'-deoxyuridine (BrdU) experiments, exposing adult fish to a short period (11 days) of constant darkness. Strikingly, in control conditions, neurogenesis in the inner nuclear and ganglion cell layer in the differentiated retina was detected. In constant darkness, we observed an effect on inner nuclear layer cell proliferation and changes in retinal cytoarchitecture of the retina with cell clusters located in the inner plexiform layer. Additionally, increased BLBP (brain lipid-binding protein) presence was detected in darkness, which has been previously associated with immature and reactivated Müller glia. Thus, our results suggest that the A. charrua retina can respond to environmental changes via rapid activation of progenitor cells in the INL, namely the Müller glia This leads us to hypothesize, that cell proliferation and neurogenesis might contribute to the responses to the functional needs of organisms, potentially playing an adaptive role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2024.114394 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!