As emerging contaminants, antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs) pose a serious threat to human health and ecological security. Here, a reduced graphene oxide and g-CN co-doped copper ferrite (rGO-CNCF) were synthesized. The composite material was characterized using XRD, FTIR, XPS, SEM-EDS, TEM, and DRS analysis methods, and a visible-light-assisted rGO-CNCF-activated PMS system was constructed for the removal of ARB and ARGs in water. The results showed that the complete inactivation of 8.01 log SA-ARB could be achieved within 30 min when the catalyst dosage was 0.2 g·L, The PMS dosage was 0.3 g·L, and the initial pH value of the solution was 7.0. The Vis-rGO-CNCF/PMS system was able to effectively reduce the horizontal transfer of SA-ARGs, and this system had a good destructive ability for intracellular and extracellular SA-ARGs. The destruction ability of the advanced oxidation process for the two pollutants together, SMT and SA-ARB, was maintained at a high level. This system could destroy the cell membrane structure of resistant bacteria, causing cell fragmentation, and quenching experiments showed that singlet oxygen (O) played a major role in the system. This study can provide a promising method for controlling ARB and ARG pollution in water and controlling the horizontal transfer of ARGs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202401171 | DOI Listing |
Cureus
December 2024
Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, IND.
Background: Colistin, a last-resort antibiotic for treating multidrug-resistant Gram-negative bacterial infections, has increased resistance as a result of the emergence of the gene. The 1gene, which confers colistin resistance, is often carried on plasmids, facilitating its spread by horizontal gene transfer among bacterial populations. The rising prevalence of 1mediated resistance poses significant challenges for infection control and treatment efficacy.
View Article and Find Full Text PDFiScience
January 2025
University of Groningen - GELIFES, Groningen, the Netherlands.
The One Health approach musters growing concerns about antimicrobial resistance due to the increased use of antibiotics in healthcare and agriculture, with all of its consequences for human, livestock, and environmental health. In this perspective, we explore the current knowledge on how interactions at different levels of biological organization, from genetic to ecological interactions, affect the evolution of antimicrobial resistance. We discuss their role in different contexts, from natural systems with weak selection, to human-influenced environments that impose a strong pressure toward antimicrobial resistance evolution.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Department of Chemistry, and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, UK.
Harnessing in situ microbial communities to clean-up polluted natural environments is a potentially efficient means of bioremediation, but often the necessary genes to breakdown pollutants are missing. Genetic bioaugmentation, whereby the required genes are delivered to resident bacteria via horizontal gene transfer, offers a promising solution to this problem. Here, we engineered a conjugative plasmid previously isolated from soil, pQBR57, to carry a synthetic set of genes allowing bacteria to consume terephthalate, a chemical component of plastics commonly released during their manufacture and breakdown.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China. Electronic address:
This study examined the effects of polyethylene terephthalate (PET) nanoplastics on the rhizosphere of Oryza sativa L., focusing on dynamic changes and interactions among microbial communities, antibiotic resistance genes (ARGs) and microplastic degradation genes (MDGs). PET exposure altered the structure and function of soil microbial, enabling specific microbial groups to thrive in polluted environments.
View Article and Find Full Text PDFEnviron Res
January 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China. Electronic address:
Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!