Glioblastoma multiforme (GBM) is the most lethal intracranial tumor with a median survival of approximately 15 months. Due to its highly invasive properties, it is particularly difficult to accurately identify the tumor margins intraoperatively. The current gold standard for diagnosing GBM during surgery is pathology, but it is time-consuming. Under these circumstances, we developed a method combining Raman spectroscopy (RS) with convolutional neural networks (CNN) to distinguish GBM. Analysis of the spectra of normal brain samples (478 spectra) and GBM samples (462 spectra) from 29 in situ intracranial tumor-bearing mice showed that this method identified GBM tissue with 96.8 % accuracy. Subsequently, spectral analysis of 23 normal human brain tissues (223 spectra) versus 21 tissues from patients with pathologically diagnosed GBM (267 spectra) revealed that the accuracy of this method was 93.9 %. Most importantly, for the difference peaks in the spectra of GBM and normal brain tissue, the common difference peaks in the mouse and human spectra were at 750 cm, 1440 cm, and 1586 cm, which emphasized the differences in cytochrome C and lipids between GBM samples and normal brain samples in both mice and human. The preliminary results showed that CNN-assisted RS is simple to operate and can rapidly and accurately identify whether it is GBM tissue or normal brain tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.125615 | DOI Listing |
Neurology
January 2025
APHP- Salpêtrière Hospital, DMU BioGem, CNRS, INSERM, Paris Brain Institute, Sorbonne University.
Background And Objectives: Brain energy deficiency occurs at the early stage of Huntington disease (HD). Triheptanoin, a drug that targets the Krebs cycle, can restore a normal brain energetic profile in patients with HD. In this study, we aimed at assessing its efficacy on clinical and neuroimaging structural measures in HD.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Medical Imaging, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
Background: Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with poor prognosis and limited treatment options. Despite advances in understanding its molecular mechanisms, effective therapeutic strategies remain elusive due to the tumor's genetic complexity and heterogeneity.
Methods: This study employed a comprehensive analysis approach integrating 113 machine learning algorithms with Mendelian Randomization (MR) analysis to investigate the molecular underpinnings of GBM.
Egypt J Immunol
January 2025
Department of Microbiology and Infection Prevention and Control Unit, Theodor Bilharz Research Institute, Giza 12411, Egypt.
Cryptococcal meningitis is an alarming fungal infection that usually affects the meninges surrounding the brain and spinal cord. The causative organism is Cryptococcus neoformans. Although this infection can occur in normal individuals, it is more often seen in patients with human immunodeficiency virus/acquired immunodeficiency syndrome.
View Article and Find Full Text PDFThe origins of resting-state functional MRI (rsfMRI) signal fluctuations remain debated. Recent evidence shows coupling between global cortical rsfMRI signals and cerebrospinal fluid inflow in the fourth ventricle, increasing during sleep and decreasing with Alzheimer's disease (AD) progression, potentially reflecting brain clearance mechanisms. However, the existence of more complex brain-ventricle coupling modes and their relationship to cognitive decline remains unexplored.
View Article and Find Full Text PDFThe vasodilator hydralazine (HYZ) has been used clinically for ∼ 70 years and remains on the World Health Organization's List of Essential Medicines as a therapy for preeclampsia. Despite its longstanding use and the concomitant progress toward a general understanding of vasodilation, the target and mechanism of HYZ have remained unknown. We show that HYZ selectively targets 2-aminoethanethiol dioxygenase (ADO) by chelating its metal cofactor and alkylating one of its ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!