Achieving pollution abatement and carbon reduction synergistically: How can industrial robots play a role?

J Environ Manage

School of Management, China Institute for Studies in Energy Policy, Collaborative Innovation Center for Energy Economics and Energy Policy, Xiamen University, Fujian, 361005, China. Electronic address:

Published: January 2025

Intelligent manufacturing and green development are pivotal issues in China's pursuit of high-quality economic growth. As the core carrier of artificial intelligence-driven production transformations, industrial robots' role in synergizing enterprise pollution control and carbon reduction has rarely been discussed in the literature. Leveraging a unique micro dataset with robot adoption, energy use, emissions, and economic factors, this study investigates the impact and mechanisms of robot adoption on enterprise pollution abatement and carbon reduction. The results unveil simultaneous SO and carbon emission intensity reductions after robot adoption. Further analysis attributes such synergistic effects primarily to front-end cleaner production rather than back-end pollution treatment. Promoting lean production, cleaner energy consumption, and technological innovation emerge as critical channels for robot adoption to exert synergistic benefits in pollution abatement and carbon reduction. Additionally, this collaborative abatement effect concentrates in large-scale enterprises, technology-intensive industry enterprises, and non-resource-based region enterprises. By elucidating robotization's micro-level workings, these findings provide valuable insights into green intelligent manufacturing and guide future integration of digital intelligence and green economy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123816DOI Listing

Publication Analysis

Top Keywords

carbon reduction
16
robot adoption
16
pollution abatement
12
abatement carbon
12
intelligent manufacturing
8
enterprise pollution
8
carbon
5
achieving pollution
4
abatement
4
reduction
4

Similar Publications

Assessing the impacts of forest cover change on carbon stock and soil moisture dynamics is critical for understanding environmental degradation and guiding sustainable land management. This study evaluates the effects of forest cover change on carbon stock and soil moisture dynamics in Nensebo Forest from 1993 to 2023 using geospatial techniques. Landsat imagery including TM (1993), ETM + (2009), and OLI/TIRS (2023) were used.

View Article and Find Full Text PDF

Enhanced Efficiency of Anionic Guerbet-Type Amino Acid Surfactants.

Langmuir

January 2025

Research Focus Area for Chemical Resource Beneficiation, Catalysis and Synthesis Research Group, North-West University, 11 Hoffman Street, Potchefstroom 2522, South Africa.

This study investigates the surfactant properties and efficiency of linear and Guerbet-type amino acid surfactants. Utilizing a Wilhelmy plate method, we assessed the colloidal efficiency of these surfactants, with the lowest observed critical micelle concentration at 0.046 mmol L, significantly reducing surface tension to as low as 25.

View Article and Find Full Text PDF

Discovering electrocatalysts that can efficiently convert carbon dioxide (CO) to valuable fuels and feedstocks using excess renewable electricity is an emergent carbon-neutral technology. A single metal atom embedded in doped graphene, , single-atom catalyst (SAC), possesses high activity and selectivity for electrochemical CO reduction (COR) to CO, yet further reduction to hydrocarbons is challenging. Here, using density functional theory calculations, we investigate stability and reactivity of a broad SAC chemical space with various metal centers (3d transition metals) and dopants (2p dopants of B, N, O; 3p dopants of P, S) as electrocatalysts for COR to methane and methanol.

View Article and Find Full Text PDF

Direct Partial Transformation of 2D Antimony Oxybromide to Halide Perovskite Heterostructure for Efficient CO Photoreduction.

Small

January 2025

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.

The photocatalytic activity of lead-free perovskite heterostructures currently suffers from low efficiency due to the lack of active sites and the inadequate photogenerated carrier separation, the latter of which is hindered by slow charge transfer at the heterostructure interfaces. Herein, a facile strategy is reported for the construction of lead-free halide-perovskite-based heterostructure with swift interfacial charge transfer, achieved through direct partial conversion of 2D antimony oxybromide SbOBr to generate CsSbBr/SbOBr heterostructure. Compared to the traditional electrostatic self-assembly method, this approach endows the CsSbBr/SbOBr heterostructure with a tightly interconnected interface through in situ partial conversion, significantly accelerating interfacial charge transfer and thereby enhancing the separation efficiency of photogenerated carriers.

View Article and Find Full Text PDF

Exposure Contrasts of Women Aged 40-79 Years during the Household Air Pollution Intervention Network Randomized Controlled Trial.

Environ Sci Technol

January 2025

Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94609, United States.

Exposure to household air pollution has been linked to adverse health outcomes among women aged 40-79. Little is known about how shifting from biomass cooking to a cleaner fuel like liquefied petroleum gas (LPG) could impact exposures for this population. We report 24-h exposures to particulate matter (PM), black carbon (BC), and carbon monoxide (CO) among women aged 40 to <80 years participating in the Household Air Pollution Intervention Network trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!