Thevinols and their 3-O-demethylated relatives, orvinols, are derivatives of the Diels-Alder adduct of natural alkaloid thebaine with methyl vinyl ketone. Taken together, thevinols and orvinols constitute an important family of opioid receptor (OR) ligands playing an important role in both the OR mediated antinociception and OR antagonism. Herein, we disclose for the first time the antagonist activity of the N-allyl substituted orvinol derivative fluorinated within the pharmacophore associated with C(20) and its surrounding. This compound was prepared via a novel synthetic sequence from 18,19-dihydrothevinone bearing an allyl substituent at N(17) and three fluorine atoms at C(21). Preliminary trials reported earlier demonstrated that the compound exhibited no analgesic activity. However, in vivo experiments conducted in an acute pain model (tail-flick test in mice) demonstrated that this fluorinated compound, when administered at doses of 5-10 mg/kg (sc) 30 min before morphine, exhibited antagonistic activity at the level of naloxone (1 mg/kg, sc) for a longer duration (at least 120 min) compared to naloxone (60 min). Together with the analgesic activity that has been reported for the C(21)-trifluorinated relatives bearing methyl or cyclopropylmethyl substituent at N(17), this result highlights C(21)-fluorinated thevinols and orvinols as the family of opioid receptor ligands (structurally related to buprenorphine, diprenorphine, etc.) covering the full range of activity profiles from agonists to antagonists, which is promising for tuning of their pharmacological properties via a substitution of hydrogen atoms within the pharmacophore associated with C(20) and its surrounding for fluorine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2024.117189DOI Listing

Publication Analysis

Top Keywords

opioid receptor
12
thevinols orvinols
8
family opioid
8
receptor ligands
8
pharmacophore associated
8
associated c20
8
c20 surrounding
8
substituent n17
8
analgesic activity
8
activity
5

Similar Publications

Calcium-mediated mitochondrial fission and mitophagy drive glycolysis to facilitate arterivirus proliferation.

PLoS Pathog

January 2025

Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.

Mitochondria, recognized as the "powerhouse" of cells, play a vital role in generating cellular energy through dynamic processes such as fission and fusion. Viruses have evolved mechanisms to hijack mitochondrial function for their survival and proliferation. Here, we report that infection with the swine arterivirus porcine reproductive and respiratory syndrome virus (PRRSV), manipulates mitochondria calcium ions (Ca2+) to induce mitochondrial fission and mitophagy, thereby reprogramming cellular energy metabolism to facilitate its own replication.

View Article and Find Full Text PDF

Background: Orexin neuropeptides help regulate sleep/wake states, respiration, and pain. However, their potential role in regulating breathing, particularly in perioperative settings, is not well understood. TAK-925 (danavorexton), a novel, orexin receptor 2-selective agonist, directly activates neurons associated with respiratory control in the brain and improves respiratory parameters in rodents undergoing fentanyl-induced sedation.

View Article and Find Full Text PDF

Ligand Reorganization for End-Point Binding Free Energy Calculations: Identifying Preferred Poses of Fentanyls in the μ Opioid Receptor.

J Chem Theory Comput

January 2025

Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States.

We have developed a method that uses energy landscapes of unbound and bound ligands to compute reorganization free energies for end-point binding free-energy calculations. The method is applied to our previous simulations of fentanyl derivatives bound to the μ opioid receptor in different orientations. Whereas the mean interaction energy provides an ambiguous ranking of binding poses, interaction entropy and ligand reorganization strongly penalize geometric decoys such that native poses observed in CryoEM structures are best ranked.

View Article and Find Full Text PDF

Pain is a dynamic and nonlinear experience shaped by injury and contextual factors, including expectations of future pain or relief . While µ opioid receptors are central to the analgesic effects of opioid drugs, the endogenous opioid neurocircuitry underlying pain and placebo analgesia remains poorly understood. The ventrolateral column of the posterior periaqueductal gray is a critical hub for nociception and endogenous analgesia mediated by opioid signaling .

View Article and Find Full Text PDF

Introduction: Mu-opioid receptors (MORs) are G-coupled protein receptors with a high affinity for both endogenous and exogenous opioids. MORs are widely expressed in the central nervous system (CNS), peripheral organs, and the immune system. They mediate pain and reward and have been implicated in the pathophysiology of opioid, cocaine, and other substance use disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!