Analysis of cutting forces and microdamage during indentation cutting of bone.

J Mech Behav Biomed Mater

Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.

Published: December 2024

AI Article Synopsis

  • In surgery, wedge-shaped blades are used to cut bone, but there's little research on how blade shape affects cutting forces and resultant microdamage.
  • The study tested compact bovine bone with various wedge blade geometries, identifying significant relationships between blade angle, edge radius, orientation, cutting force, and microdamage.
  • Results indicated a direct correlation between the cutting force and the level of microdamage, enhancing our understanding of the biomechanics involved in surgical bone cutting.

Article Abstract

In surgery, bone can be cut by applying force to a wedge-shaped blade. The published literature is relatively sparse regarding the biomechanics of this type of indentation cutting, especially regarding the relationships between blade geometry, bone quality, cutting force and microdamage. Microdamage created near the cut surfaces can be beneficial, as a trigger for bone remodelling, but it is known that excessive fracture damage can prolong the healing time. In this research, specimens of compact bovine bone were tested by cutting using wedge blades of different geometries. We labelled and measured microdamage occurring during bone cutting for the first time. We found that there were statistically significant effects arising from the variation in wedge angle, edge radius and blade orientation (with respect to bone's anisotropic structure) on both the magnitude of the cutting force and the extent of the microdamage. Interestingly, we found that the amount of damage occurring during cutting is directly correlated to the cutting force which causes the damage, independent of other factors. This work contributes to a better understanding of the biomechanics of this important surgical cutting process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2024.106870DOI Listing

Publication Analysis

Top Keywords

cutting force
12
cutting
9
indentation cutting
8
bone
6
microdamage
5
analysis cutting
4
cutting forces
4
forces microdamage
4
microdamage indentation
4
cutting bone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!