Host microRNAs as regulators of porcine reproductive and respiratory syndrome virus infection.

Virology

Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. Electronic address:

Published: December 2024

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is a significant pathogen in the swine industry. MicroRNAs (miRNAs), a class of small non-coding RNA molecules, have risen to prominence as key regulators of gene expression at the post-transcriptional level. Their significance in regulating virus-host interactions is now widely acknowledged. So far, more than 30 miRNAs have been found to play a role in PRRSV infection. They can regulate viral genome stability and protein synthesis by targeting PRRSV RNA, and modulate the host immune response, thus affecting PRRSV replication. Understanding the role of miRNAs in PRRSV infection can further elucidate the pathogenesis of PRRSV and pave the way for the development of new antiviral strategies through miRNA-based therapies. This review will focus on how host miRNAs alter PRRSV infection, underscoring their multifaceted involvement in the interplay between virus and host.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2024.110361DOI Listing

Publication Analysis

Top Keywords

prrsv infection
12
porcine reproductive
8
reproductive respiratory
8
respiratory syndrome
8
syndrome virus
8
prrsv
7
host
4
host micrornas
4
micrornas regulators
4
regulators porcine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!