Stabilization of nanoscale magnetic bubbles in zero magnetic field by rotatable magnetic force microscopy.

Micron

University of Science and Technology of China, Hefei 230026, China; Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • Research explores bubble magnetic textures in thin films, highlighting the potential for spintronic applications.
  • Using a custom magnetic force microscopy setup, the study observes how magnetic stripe domains change to isolated bubbles under specific magnetic conditions.
  • Findings show a stable bubble formation in zero magnetic field, driven by energy minimization, which offers a new approach for developing spintronics.

Article Abstract

The Stabilization of bubble magnetic textures in zero magnetic field has garnered significant attention due to its potential application in spintronic devices. Herein, we employed a home-built rotatable magnetic force microscopy (MFM) to observe the evolution of magnetic domains in NiO/Ni/Ti thin films. Magnetic stripe domains decay into isolated magnetic bubbles under an out-of-plane magnetic field at 100 K, and magnetic stripes reappear when the external magnetic field is reduced to zero. By rotating the sample within an external magnetic field of 0.42 T, the magnetic stripes transform into nanoscale magnetic bubble domains. This transition is driven by the minimization of the magnetostatic energy, accompanied by an increase in both the exchange energy and the Zeeman energy. The classical ferromagnetic Heisenberg model effectively describes the magnetic stripe-to-bubble transition under an applied magnetic field. The dense bubble domains remain stable in zero magnetic field due to long-range magnetostatic interaction. We introduce a straightforward method for constructing bubble domains in a zero magnetic field. This work presents a promising material platform for the future development of bubble-based spintronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2024.103777DOI Listing

Publication Analysis

Top Keywords

magnetic field
32
magnetic
19
bubble domains
12
nanoscale magnetic
8
magnetic bubbles
8
field
8
rotatable magnetic
8
magnetic force
8
force microscopy
8
spintronic devices
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!