Objective: Accurate predictive models for second primary non-small cell lung cancer (SP-NSCLC) are limited. This study aimed to develop and validate overall survival (OS) prediction models for SP-NSCLC patients using time-dependent interpretable survival machine learning algorithms.
Methods: This study utilized data from the Surveillance, Epidemiology, and End Results (SEER) database, encompassing 8 and 12 registries, to extract data on patients aged 20-89 diagnosed with SP-NSCLC between 1988 and 2020. The dataset was divided into development, external temporal and spatial validation cohorts. Predictors included demographic, clinical, pathological and initial primary cancer-related features. Multiple survival machine learning algorithms were developed and validated, assessing model performance using C-index, time-dependent area under the receiver operating characteristic curve (time-AUC), and time-dependent Brier Score. The time-dependent interpretability analysis was employed to explore the time-dependent feature importance of key predictors.
Results: The Blackboost model demonstrated excellent performance (C-index: 0.7517, and time-AUC: 0.8438), and good calibration (time-Brier Score of 0.0754). External validations and subgroup analyses demonstrated the robustness, generalizability, and fairness. Utilizing the optimal cutoff threshold, high-risk groups could be effectively identified. Surgery was the most critical predictor across the entire survival period. Combined stage (distant) and chemotherapy were the second most important predictors within 0 to 5 years, while age replaced from 5 to 20 years. Additionally, we developed an online visualization tool.
Conclusions: The Blackboost survival model achieved accurate, fair, and robust survival prediction for SP-NSCLC patients. Surgery, combined stage (distant), chemotherapy, and age contributed differently across various survival periods. The online visualization tool facilitated personalized survival predictions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmedinf.2024.105771 | DOI Listing |
Am J Clin Pathol
January 2025
Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
Objectives: Immune checkpoint inhibitors have revolutionized treatment of platinum-refractory advanced bladder cancer, offering hope where options are limited. Response varies, however, influenced by factors such as the tumor's immune microenvironment and prior therapy. Muscle-invasive bladder cancer (MIBC) is stratified into molecular subtypes, with distinct clinicopathologic features affecting prognosis and treatment.
View Article and Find Full Text PDFWorld J Surg
January 2025
Yong Loo Lin School of Medicine, National University of Sinagpore, Singapore, Singapore.
Anesth Analg
February 2025
SC Terapia Intensiva Neurochirurgica, Ospedale San Carlo Borromeo, ASST Santi Paolo e Carlo, Milano, Italy.
Background: Computed tomography (CT)-derived low muscle mass is associated with adverse outcomes in critically ill patients. Muscle ultrasound is a promising strategy for quantitating muscle mass. We evaluated the association between baseline ultrasound rectus femoris cross-sectional area (RF-CSA) and intensive care unit (ICU) mortality.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Emergency Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
As the elderly population expands, enhancing emergency department (ED) care by assessing frailty becomes increasingly vital. To address this, we developed a novel electronic Frailty Index (eFI) from ED health records, specifically designed to assess frailty and predict hospitalization, in-hospital mortality, ICU admissions, and 30-day ED readmissions. This retrospective, single-center study included patients 65 years old or older who presented to the ED of IRCCS Humanitas Research Hospital in Milan, Italy, between January 2015 and December 2019.
View Article and Find Full Text PDFBackground And Aims: The importance of risk stratification in patients with chest pain extends beyond diagnosis and immediate treatment. This study sought to evaluate the prognostic value of electrocardiogram feature-based machine learning models to risk-stratify all-cause mortality in those with chest pain.
Methods: This was a prospective observational cohort study of consecutive, non-traumatic patients with chest pain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!