Abdominal aortic aneurysm (AAA) is a chronic inflammation-driven disease characterized by aortic wall destruction and expansion, leading to high morbidity and mortality. However, previous drug treatments for its common risk factors have not achieved favorable results, and the early prevention and treatment is still the main clinical dilemma. Anti-inflammation therapy is a promising therapeutical method targeting its pathogenesis mechanism, but it has not been explored in depth. Herein, interleukin-1 receptor antagonist-loaded manganese-doped mesoporous silica nanoparticles (IL-1Ra@MMSN) were designed and synthesized to target macrophage-mediated chronic aortic inflammation for AAA treatment. IL-1Ra@MMSN showed high IL-1Ra-loading efficiency, great stability and pH-responsive drug-releasing property. IL-1Ra@MMSN specially phagocytosed by macrophages can protect against oxidative stress injury and promoted the M2 polarization via transforming growth factor-β (TGF-β) signaling in vitro. Furthermore, IL-1Ra@MMSN exhibited good lesion targeting ability, hemocompatibility and biocompatibility in angiotensin II-induced murine AAA model. In vivo experiments also confirmed the excellent treatment efficacy in reducing AAA formation and progression via protecting aortic wall integrity and promoting anti-inflammatory microenvironment. Taken together, the current study demonstrated that IL-1Ra@MMSN is a promising nanoplatform for early intervention of AAA, which provides a novel treatment strategy based on anti-inflammatory immune regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.12.140DOI Listing

Publication Analysis

Top Keywords

mesoporous silica
8
abdominal aortic
8
aortic aneurysm
8
aortic wall
8
aortic
5
treatment
5
aaa
5
il-1ra@mmsn
5
functional anti-inflammatory
4
anti-inflammatory mesoporous
4

Similar Publications

Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).

View Article and Find Full Text PDF

Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.

View Article and Find Full Text PDF

The therapeutic diagnosis of liver diseases has garnered significant interest within the medical community. In recent years, mesoporous silica nanoparticles (MSNs) have emerged as crucial nanocarriers for the treatment of liver ailments. Their remarkable diagnostic capabilities enable them to be used in techniques such as high-throughput mass spectrometry (MS), magnetic resonance imaging (MRI), near-infrared (NIR) fluorescence imaging, photoacoustic imaging (PAI), and ultrasonography (US), attracting considerable attention.

View Article and Find Full Text PDF

The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation.

View Article and Find Full Text PDF

Cadmium translocation combined with metabolomics analysis revealed potential mechanisms of MT@MSN-CS and GSH@MSN-CS in reducing cadmium accumulation in rice (Oryza sativa L.) grains.

Environ Sci Pollut Res Int

January 2025

Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Department of Environmental Engineering, Zhejiang University, Zhejiang Province, Hangzhou, 310058, P.R. China.

Applying nano-delivery systems for phytohormones via foliar application has proven effective in reducing grain cadmium (Cd) levels in crops. However, the mechanisms underlying this reduction remain inadequately understood. This study integrated the determination of leaf photosynthetic parameters, Cd translocation analysis, and metabolomics to elucidate the effects of reduced glutathione (GSH) and melatonin (MT), delivered with or without chitosan-encapsulated mesoporous silica nanoparticles (MSN-CS), on grain Cd levels in rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!