The complex pathology of Parkinson's disease (PD) requires comprehensive understanding and multi-pronged interventions for communication between nerve cells. Despite new developments in nanotechnology in the treatment of PD, in-depth exploration of their biological effects, in particular, the specific mechanisms of inflammation inhibition are lacking. Herein, using the stable cascade catalysis channel formed by polydopamine (PDA), imidazole groups, and Cu ions, a microgel system comprising functional monomers [superoxide dismutase (SOD) with double bonds, PDA, 2-methacryloyloxy ethyl phosphorylcholine (MPC), and Cu ions] is proposed for managing PD. The microgel can be efficiently delivered to the brain aided by MPC, after which a multi-level regulatory strategy targeting neurons and microglia can be initiated. The catalytic activity cascade elicited by SOD and Cu ions can regulate the anti-inflammatory phenotypic transformation of microglia by relieving oxidative stress. Meanwhile, the dopamine (DA) released from PDA can facilitate DA storage and neurogenesis, inhibiting CX3CL1 release and the CX3CR1 receptor on microglia and further regulating the CX3CL1/CX3CR1-NF-κB-NLRP3 signaling pathway in microglia to inhibit neuroinflammation. Therefore, the proposed microgel delivery system with functional monomers represents a promising therapeutic strategy for managing neuroinflammation and promoting neurogenesis in PD by intervening chemokine axis-mediated communication between neurons and microglia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202410070 | DOI Listing |
Phys Chem Chem Phys
January 2025
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, A-6020 Innsbruck, Austria.
Peptide bond formation from the pure protonated glycine dimer, H(Gly), and from the mixed protonated glycine-diglycine dimer, HGly(Gly), was recently found experimentally to occur in gas-phase experiments in the absence of any catalyst and especially under anhydrous conditions [, 2023, , 775]. In this contribution we further examine the conditions of such unimolecular reactions by means of density-functional theory calculations at the DFT/M06 2X/6-311G++(2df,p) level, focusing in particular on the role played by the protonation site. Two pathways, stepwise and concerted, are identified for the pure protonated dimer, and six pathways are examined for the mixed dimer.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany.
Aromatic diimides such as naphthalene diimide (NDI) and pyromellitic diimide (MDI) are important building blocks for organic electrode materials. They feature a two-electron redox mechanism that allows for energy storage. Due to the smaller size of MDI compared to NDI its theoretical capacity is higher.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Lab of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
Along with the quick advancements in enzyme technology, inactivation has emerged as the key barrier for enzymes to be fully utilized as biocatalysts. Here, a novel strategy is presented for the preservation of the enzymatic activity even after heat treatment by grafting enzymes onto the thermal responsive block copolymer via an activated ester-amine reaction. A new water-soluble activated ester monomer, acrylic polyethylene glycol (PEG) functionalized 3-fluoro-4-hydroxybenzoate is synthesized.
View Article and Find Full Text PDFCannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of cannulae and of protein assemblies derived from recombinant cannula-like proteins.
View Article and Find Full Text PDFDes Monomers Polym
January 2025
Department of Physics Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia.
Polydimethylsiloxane (PDMS) is a polymer that can be used as a vitreous substitute. To fulfill the need for PDMS on a large scale, synthesis of PDMS in a large number is also needed. Therefore, intensive research is needed to produce PDMS in large quantities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!