Non-invasive glucose monitoring is crucial for diabetes management. This study explores the use of photoacoustic (PA) signals based on optical rotation estimation at multiple depths for detection of glucose concentrations. Experiments were performed with glucose samples mixed in bovine serum albumin with different polarization incidences-vertical (V), 45° linear (P), and right circular (R) polarization. Polarized Monte Carlo (PMC) simulations were performed to understand the depth-dependent behavior between optical and photoacoustic detection of optical rotation, which allows the estimate of glucose concentration. Notably, a specific depth range exhibited both maximum rotation and a better linear relationship with concentration, which are ideal for sensing. Both experimental and simulation studies indicated significant depolarization beyond a depth of 4 mm. Additionally, the change in rotation with respect to depth (Δ) was higher for larger concentration differences compared to smaller concentration differences. Our study identified that the optimal depth for accurate glucose sensing (based on Clarke's error grid (CEG)) was found to be around 3-3.2 mm for the different polarized incidences. These findings showcase the potential of our approach for non-invasive glucose sensing and a calibration procedure to pinpoint optimal sensing depths, extendable to other chiral molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.537075DOI Listing

Publication Analysis

Top Keywords

glucose sensing
12
optical rotation
12
accurate glucose
8
non-invasive glucose
8
concentration differences
8
glucose
7
sensing
5
rotation
5
optimal path
4
path length
4

Similar Publications

Glucose sensing remains a crucial need as diabetes is a worldwide concern. This work reports the application of NbCT-selenium nanoparticle composite material for the nonenzymatic sensing of glucose. The surface morphology of the synthesized composite was analyzed using various microscopic techniques like scanning electron microscopy, transmission electron microscopy, and its structural properties were analyzed using diffraction and spectroscopic methods.

View Article and Find Full Text PDF

A Refractive Index-Based Dual-Band Metamaterial Sensor Design and Analysis for Biomedical Sensing Applications.

Sensors (Basel)

January 2025

Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.

We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.

View Article and Find Full Text PDF

In this study, an approach has been proposed in response to the urgent need for a sensitive and stable method for glucose detection at low concentrations. Platinum octaethylporphyrin (PtOEP) was chosen as the probe and embedded into the matrix material to yield a glucose-sensing film, i.e.

View Article and Find Full Text PDF

Enzymatic cascade reactions are widely utilized in food security, environmental monitoring, and disease diagnostics, whereas their practical application was hindered due to their limited catalytic efficiency and intrinsic fragility to environmental influences. Herein, a compartmentalized dual-enzyme cascade nanoreactor was constructed in metal-organic frameworks (ZIF-8) by a shell-by-shell growth method. ZIF-8 provided a good microenvironment to maintain the activity of enzymes and protected them against harsh conditions.

View Article and Find Full Text PDF

Enhanced dextran production by Weissella confusa in co-culture with Candida shehatae and its quorum sensing regulation mechanism.

Int J Biol Macromol

January 2025

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China. Electronic address:

Lactic acid bacteria (LAB) are well-known for its expertise in synthesizing exopolysaccharides (EPS), which are linked to significant health benefits, such as its prebiotic effects and ability to modulate the immune system. However, the synthesis of EPS is hindered by low yields. The objective of this study was to investigate the impact of co-cultivation on EPS output by Weissella confusa XG-3 when paired with Candida shehatae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!