Fabrication of a three-dimensional scaffold-free trachea with horseshoe-shaped hyaline cartilage: comment.

Eur J Cardiothorac Surg

Saveetha Medical College and Hospital Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Published: December 2024

Download full-text PDF

Source
http://dx.doi.org/10.1093/ejcts/ezae466DOI Listing

Publication Analysis

Top Keywords

fabrication three-dimensional
4
three-dimensional scaffold-free
4
scaffold-free trachea
4
trachea horseshoe-shaped
4
horseshoe-shaped hyaline
4
hyaline cartilage
4
cartilage comment
4
fabrication
1
scaffold-free
1
trachea
1

Similar Publications

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Obtaining reliable dynamic mechanical properties through experiments is essential for developing and validating constitutive models in material selection and structural design. This study introduces a dynamic tensile method using a modified M-type specimen loaded by a split Hopkinson pressure bar (SHPB). A closed M-type specimen was thus employed.

View Article and Find Full Text PDF

Recent studies have identified microneedle (MN) arrays as promising alternatives for transdermal drug delivery. This study investigated the properties of novel staggered MN arrays design featuring two distinct heights of MNs. The staggered MN arrays were precisely fabricated via PμSL light-cured 3D printing technology.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research highlights the potential of polyhydroxyalkanoates (PHAs), especially poly(3-hydroxybutyrate) (P3HB), for creating fine fiber nonwoven structures, with fiber diameters ranging from 2.5 µm to 20 µm through the meltblow process.
  • The study identifies limitations in existing PHA fabrics, such as brittleness and low flexibility, but shows how advancements in their processing can lead to stable three-dimensional nonwoven parts.
  • It also reveals that the PHA copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) demonstrates improved elongation properties and resilience compared to P3HB, especially
View Article and Find Full Text PDF

Tissue engineering and regenerative medicine have made significant breakthroughs in creating complex three-dimensional (3D) constructs that mimic human tissues. This progress is largely driven by the development of hydrogels, which enable the precise arrangement of biomaterials and cells to form structures resembling native tissues. Gelatin-based bioinks are widely used in wound healing due to their excellent biocompatibility, biodegradability, non-toxicity, and ability to accelerate extracellular matrix formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!