Clarifying the Active Structure and Reaction Mechanism of Atomically Dispersed Metal and Nonmetal Sites with Enhanced Activity for Oxygen Reduction Reaction.

Adv Mater

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China.

Published: December 2024

Atomically dispersed transition metal (ADTM) catalysts are widely implemented in energy conversion reactions, while the similar properties of TMs make it difficult to continuously improve the activity of ADTMs via tuning the composition of metals. Introducing nonmetal sites into ADTMs may help to effectively modulate the electronic structure of metals and significantly improve the activity. However, it is difficult to achieve the co-existence of ADTMs with nonmetal atoms and clarify their synergistic effect on the catalytic mechanism. Therefore, elucidating the active sites within atomically dispersed metal-nonmetal materials and unveiling catalytic mechanism is highly important. Herein, a novel hybrid catalyst, with coexistence of Co single-atoms and Co─Se dual-atom sites (Co─Se/Co/NC), is successfully synthesized and exhibits remarkable performance for oxygen reduction reaction (ORR). Theoretical results demonstrate that the Se sites can effectively modulate the charge redistribution at Co active sites. Furthermore, the synergistic effect between Co single-atom sites and Co─Se dual-atom sites can further adjust the d-band center, optimize the adsorption/desorption behavior of intermediates, and finally accelerate the ORR kinetics. This work has clearly clarified the reaction mechanism and shows the great potential of atomically dispersed metal-nonmetal nanomaterials for energy conversion and storage applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202416126DOI Listing

Publication Analysis

Top Keywords

atomically dispersed
16
reaction mechanism
8
sites
8
nonmetal sites
8
oxygen reduction
8
reduction reaction
8
energy conversion
8
improve activity
8
effectively modulate
8
catalytic mechanism
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!