Rice is considered to be moderately salt-tolerant during germination, development, and ripening stages, and environmentally sensitive during seedling and reproductive stages, which affects seedling emergence and growth, resulting in significant yield losses. Seed conditioning with chitosan has been employed as a useful tool in high-salinity environments with the aim of increasing crop productivity and quality, as well as promoting more sustainable agricultural practices. Therefore, this study aimed to examine the effect of seed conditioning with chitosan on seed germination and rice seedling growth under salinity stress. The experiment consisted of three seeds conditioning and 4 salinity levels, arranged in a completely randomized design with 4 replications. Seeds were sown on germitest paper, and the rolls were placed in a germination chamber (25 ± 2°C and 12 hr photoperiod). Germination and seedling growth parameters were determined. The high salt concentration resulted in reduced growth of rice seedlings, and exogenous application of chitosan at different concentrations and soaking times exerted no apparent adverse effect on germination and growth variables. The attenuating effect of chitosan was observed in the length of the seedlings at all the concentrations utilized. Therefore, evidence indicates that conditioning rice seeds with chitosan might serve as an alternative to mitigate the adverse effects of exposure to stress induced by high salt concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15287394.2024.2434656DOI Listing

Publication Analysis

Top Keywords

conditioning rice
8
rice seeds
8
seeds chitosan
8
seed conditioning
8
conditioning chitosan
8
seedling growth
8
high salt
8
chitosan
6
conditioning
5
germination
5

Similar Publications

This review provides an overview of the main vegetable oils of different botanical origin and composition that can be used for frying worldwide (olive and extra-virgin olive oil, high-oleic sunflower oil, rapeseed oil, peanut oil, rice bran oil, sunflower oil, corn oil, soybean oil, cottonseed oil, palm oil, palm kernel oil and coconut oil) and their degradation during this process. It is well known that during this culinary technique, oil's major and minor components degrade throughout different reactions, mainly thermoxidation, polymerization and, to a lesser extent, hydrolysis. If severe high temperatures are employed, isomerization to fatty acyl chains and cyclization are also possible.

View Article and Find Full Text PDF

Competing effects of activation history on force and cytosolic Ca in intact single mice myofibers.

Pflugers Arch

December 2024

School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.

The purpose was to investigate the changes in cytosolic Ca and force output during post-tetanic potentiation (PTP) during pre-fatigue and during prolonged low-frequency force depression (PLFFD) following fatigue. Intact single myofibers from the flexor digitorum brevis of mice were electrically stimulated to record force (n = 8) and free cytosolic Ca concentration ([Ca]) with FURA-2 (n = 6) at 32 °C. Initially, force and [Ca] were measured during brief (350 ms) trains of stimuli at 30, 50, 70, and 200 Hz at ~ 2 s intervals (Force-frequency protocol, FFP).

View Article and Find Full Text PDF

Rice is considered to be moderately salt-tolerant during germination, development, and ripening stages, and environmentally sensitive during seedling and reproductive stages, which affects seedling emergence and growth, resulting in significant yield losses. Seed conditioning with chitosan has been employed as a useful tool in high-salinity environments with the aim of increasing crop productivity and quality, as well as promoting more sustainable agricultural practices. Therefore, this study aimed to examine the effect of seed conditioning with chitosan on seed germination and rice seedling growth under salinity stress.

View Article and Find Full Text PDF

Effects of the kappa-opioid receptor antagonist nor-binaltorphimine on methamphetamine-vs-food choice in male rhesus monkeys.

Drug Alcohol Depend

January 2025

Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, MD, USA.

Background: Kappa-opioid receptors (KOR) are hypothesized to be involved in mediating ongoing methamphetamine self-administration. Previous rat studies have demonstrated that treatment with the KOR antagonist nor-binaltorphimine (nor-BNI) decreases methamphetamine self-administration. However, KOR antagonist effects on methamphetamine self-administration in nonhuman primates are unknown.

View Article and Find Full Text PDF

Astrocyte activation plays a pivotal role in accelerating the cascade of neuroinflammation associated with the development of hypoxic-ischemic brain injury. This study aimed to investigate the mechanism by which sevoflurane postconditioning mitigates neuronal damage through astrocytes by regulating reactive astrocytic Signal Transducer and Activator of Transcription 3 (STAT3) modifications. A modified Rice‒Vannucci model in rats and a conditioned culture system established by subjecting primary astrocytes to oxygen glucose deprivation, followed by using the conditioned medium to culture the neuron cell line SH-SY5Y were used to simulate HI insult in vivo and in vitro, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!