Symbiotic nitrogen fixation (SNF) provides nitrogen for soybean. A primary challenge in enhancing yield through efficient SNF lies in striking a balance between its high energy consumption and plant growth. However, the systemic transcriptional reprogramming during nodulation remains limited. Here, this work conducts a comprehensive RNA-seq of the roots, cotyledons and leaves of inoculated-soybean. This work finds 88,814 mRNAs and 6,156 noncoding RNAs (ncRNAs) across various organs. Notably, this work identifies 6,679 nodulation-regulated mRNAs (NR-mRNAs), 1,681 long noncoding RNAs (lncRNAs) (NR-lncRNAs), and 59 miRNAs (NR-miRNAs). The majority of these NR-RNAs are associated with plant-microbial interaction and exhibit high organ specificity. Roots display the highest abundance of NR-ncRNAs and the most dynamic crosstalk between NR-lncRNAs and NR-miRNAs in a GmNARK-dependent manner. This indicates that while each tissue responds uniquely, GmNARK serves as a primary regulator of the transcriptional control of nodulated-plants. Furthermore, this work proves that lnc-NNR6788 and lnc-NNR7059 promote nodulation by regulating their target genes. This work also shows that the nodulation- and GmNARK-regulated (NNR) lnc-NNR4481 negatively regulates nodulation through miR172c within a competing endogenous RNA (ceRNA) network. The spatial organ-type transcriptomic atlas establishes a benchmark and provides a valuable resource for integrative analyses of the mechanism underlying of nodulation and plant growth balance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202412104 | DOI Listing |
Fish Physiol Biochem
January 2025
Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
A complete set of monosomic alien addition lines of Radish-Brassica oleracea exhibiting extensive variations was generated and well characterized for their chromosome behaviors and phenotypic characteristics. Monosomic alien addition lines (MAALs) are developed through interspecific hybridization, where an alien chromosome from a relative species is introduced into the genome of the recipient plant, serving as valuable genetic resources. In this study, an allotetraploid Raphanobrassica (RRCC, 2n = 36) was created from the interspecific hybridization between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18).
View Article and Find Full Text PDFPlants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.
View Article and Find Full Text PDFPlant Physiol
January 2025
Institute of Biology, University of Graz, Graz, Austria.
Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFPlant Physiol
January 2025
College of Horticulture, China Agricultural University, Beijing, 100193, China.
Although C2H2 zinc finger transcription factors are important in plant growth, development, and stress resistance, their specific roles in fruit ripening have been less explored. Here, we demonstrate that the C2H2 zinc finger transcription factor 5 (SlZAT5) regulates fruit ripening in tomato (Solanum lycopersicum L.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!