Nuclear receptors, a group of 48 transcription factors that regulate a multitude of processes within our body, have long been employed as diagnostic markers or therapeutic targets in breast cancer, prostate cancer, and acute promyelocytic leukemia. Unfortunately, no comprehensive investigation has been conducted on their significance in other cancer types. The current study aimed to explore novel diagnostic markers by classifying nuclear receptors according to their expression patterns based on transcriptome data from The Cancer Genome Atlas on 10,071 tumor samples across 33 cancer types and investigating their association with genetic mutations, histological types, and prognosis. Our analysis showed that 21 cancers, including breast cancer, can be classified into distinct clusters based on their nuclear receptor expression profiles. Moreover, significant differences in overall survival were observed in 9 of the 21 cancer types. Overall, the results of this study indicate that previously overlooked nuclear receptors, such as NR0B1 in lung adenocarcinoma, may prove beneficial in the diagnosis of several cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666854PMC
http://dx.doi.org/10.1007/s12672-024-01732-4DOI Listing

Publication Analysis

Top Keywords

cancer types
16
nuclear receptors
12
nuclear receptor
8
cancer
8
diagnostic markers
8
breast cancer
8
nuclear
5
types
5
receptor profiling
4
profiling subtype
4

Similar Publications

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

Lung cancer is one of the major causes of cancer morbidity and mortality. Subtyping of non-small cell lung cancer is necessary owing to different treatment options. This study is to evaluate the value of immunohistochemical expression of glypican-1 in the diagnosis of lung squamous cell carcinoma (SCC).

View Article and Find Full Text PDF

TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds.

Clin Transl Oncol

January 2025

Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.

Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.

View Article and Find Full Text PDF

Node Reporting and Data System 1.0 (Node-RADS) for the Assessment of Oncological Patients' Lymph Nodes in Clinical Imaging.

J Clin Med

January 2025

Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy.

The assessment of lymph node (LN) involvement with clinical imaging is a key factor in cancer staging. Node Reporting and Data System 1.0 (Node-RADS) was introduced in 2021 as a new system specifically tailored for classifying and reporting LNs on computed tomography (CT) and magnetic resonance imaging scans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!