The Klein-Gordon problem (KGP) is one of the interesting models that appear in many scientific phenomena. These models are characterized by memory effects, which provide insight into complex phenomena in the fields of physics. In this regard, we propose a new robust algorithm called the confluent Bernoulli approach with residual power series scheme (CBCA-RPSS) to give an approximate solution for the fractional nonlinear KGP. The convergence, uniqueness and error analysis of the proposed method are discussed in detail. A comparison of the numerical results obtained by CBCA-RPSS with the results obtained by some well-known algorithms is presented. Numerical simulations using base errors indicate that CBCA-RPSS is an accurate and efficient technique and thus can be used to solve linear and nonlinear fractional models in physics and engineering. All the numerical results for the studied problems were obtained through implementation codes in Matlab R2017b.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666727PMC
http://dx.doi.org/10.1038/s41598-024-79247-9DOI Listing

Publication Analysis

Top Keywords

residual power
8
power series
8
series scheme
8
klein-gordon problem
8
scheme treatments
4
treatments fractional
4
fractional klein-gordon
4
problem arising
4
arising soliton
4
soliton theory
4

Similar Publications

Multifunctional Organic Molecule for Defect Passivation of Perovskite for High-Performance Indoor Solar Cells.

Materials (Basel)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.

Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.

View Article and Find Full Text PDF

The advancement of miniaturizing electronic information technology draws growing interest in dielectric capacitors due to their high-power density and rapid charge/discharge capabilities. The sol-gel method was utilized to fabricate the 0.75Pb(ZrTi)O-0.

View Article and Find Full Text PDF

Study on the damage and variation of Agropyron mongolicum induced by the combined action of discharge plasma and plasma-activated water.

Plant Physiol Biochem

January 2025

College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot, 010051, China.

To investigate the effect of combined action of discharge plasma (DP) and plasma-activated water (PAW) in mutagenesis breeding, this study focuses on Agropyron mongolicum. We utilized high-voltage DC pulsed dielectric barrier discharge for seed treatment, alone and in combination with PAW. The research focused on germination rates, evolution of physicochemical properties of imbibition residual solution, reactive oxygen species (ROS), malondialdehyde (MDA), and volatile organic compounds (VOCs) to assess DP-induced damage and variability in Agropyron mongolicum.

View Article and Find Full Text PDF

Rubbers prepared from technical poly(butadiene) and natural poly(isoprene) are studied by field-cycling (FC) H NMR relaxometry to elucidate the changes of the relaxation spectrum. Starting with the non-cross-linked polymer successively cross-links are introduced via sulfur or peroxide vulcanization. Applying an advanced home-built relaxometer allows one to probe entanglement dynamics in addition to Rouse dynamics.

View Article and Find Full Text PDF

DMSO-Assisted Control Enables Highly Efficient 2D/3D Hybrid Perovskite Solar Cells.

Small

January 2025

State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.

Building 2D/3D heterojunction is a promising approach to passivate surface defects and improve the stability of perovskite solar cells (PSCs). Developing effective methods to build high-quality 2D/3D heterojunction is in demand. The formation of 2D/3D heterojunction involves both the diffusion of 2D spacer molecules and phase transition from 3D to 2D structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!