Overcoming Selectivity Trade-Offs in Alkene Azidodifluoroalkylation: An Enlightening Synergistic Catalytic Approach.

Org Lett

Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic of China.

Published: January 2025

Recent advances in dual catalysis involving biomimetic conversion strategies that utilize radical ligand transfer (RLT) often rely on large doses of precious metal additives. The role of these additives within the mechanism remains ambiguous, leading to complex reaction conditions, uncertain pathways, and increased costs. These challenges complicate the study of the reaction process and are accompanied by potential safety risks. To address these issues, azide salt was used as an alternative to TMSN. This replacement not only avoids the drawbacks associated with almost parallel research on alkene azidodifluoroalkylation but also eliminates the need for ligands. Comparative analysis indicates that existing biomimetic synergistic catalysis strategies require AgCO additives to enhance selectivity in alkene difunctionalization reactions, highlighting the superior simplicity, environmental friendliness, and operational ease of our developed synergistic catalysis strategy. Furthermore, under the guidance of our proposed mechanism, an alkene azidosulfonation was designed, validating the innovative and practical applicability of our synergistic catalysis approach.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c04015DOI Listing

Publication Analysis

Top Keywords

synergistic catalysis
12
alkene azidodifluoroalkylation
8
overcoming selectivity
4
selectivity trade-offs
4
alkene
4
trade-offs alkene
4
azidodifluoroalkylation enlightening
4
synergistic
4
enlightening synergistic
4
synergistic catalytic
4

Similar Publications

A site-selective coupling involving quinoxalin-2-ones with alkenes and alkynes has been developed through synergistic visible-light photoredox cobalt catalysis. This method enables C3-selective alkylation and alkenylation of both -substituted and -unsubstituted quinoxalin-2-ones, achieving high yields under mild conditions. Of note, the protocol facilitates the incorporation of two alkene units, leading to a formal three-component coupling, whereas a two-component coupling is preferred for alkynes.

View Article and Find Full Text PDF

Nano-TiO as an antimicrobial inorganic material, can stimulate cells to produce reactive oxygen species and exhibit effective biochemical properties; however, phenylpyrazole derivatives, as organic pesticides, are widely used in agriculture and food. To find novel pesticides with environmental friendliness, combined with three-dimensional quantitative structure-activity relationship (3D-QSAR) prediction analysis, three types of alkaloidal phenylpyrazole amine derivatives (PA) were synthesized by a one-pot microwave method. Based on the dye sensitization strategy, four nano-organometallic pesticides (PT) were prepared by organic-inorganic hybridization.

View Article and Find Full Text PDF

Strong coupling FeVO nanoparticles/3D N-doped interconnected porous carbon derived from MOFs by confined adsorption-assembly-pyrolysis for greatly boosting oxygen reduction.

J Colloid Interface Sci

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China. Electronic address:

Low-cost and effective electrocatalysts are critical for energy storage and conversion. Herein, iron(III) and vanadium(III) acetylacetonates were first adsorbed and confined in porous zeolitic imidazolate framework-8 (ZIF-8), which further cross-linked together by the methanol-induced-assembly. Following the pyrolysis, the FeVO nanoparticles were efficiently encapsulated within three-dimensional (3D) N-doped interconnected porous carbon, termed FeVO/NIPC.

View Article and Find Full Text PDF

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Dendritic Platinum Nanoparticles Shielded by Pt-S PEGylation as Intracellular Reactors for Bioorthogonal Uncaging Chemistry.

Angew Chem Int Ed Engl

January 2025

University of Edinburgh, Edinburgh Cancer Research, Crewe Road South, Institute of Genetics and Cancer, EH4 2XR, Edinburgh, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Beyond their classical role as cytotoxics, Platinum (Pt) coordination complexes recently joined the selected group of transition metals capable of performing bioorthogonal reactions in living environments. To minimize their reactivity towards nucleophiles, which limit their catalytic performance, we investigated the use of Pt(0) with different forms, sizes and surface functionalization. We report herein the development of PEGylated Pt nanodendrites with the capacity to activate prodyes and prodrugs in cell culture and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!