Background: Whole bladder irradiation is an organ preservation treatment approach for muscle-invasive bladder cancer (MIBC). Conventional planning margins, typically 15-20 mm, increase normal tissue toxicity and limit possible dose escalation.
Purpose: The study aimed to develop a patient-specific adaptive margin recipe for whole bladder irradiation to minimize the planning target volume (PTV) while preserving adequate dose coverage.
Methods: Sixteen patients who received whole-bladder irradiation were retrospectively selected for this study. We proposed a patient-specific anisotropic adaptive margin recipe, derived from the first five fractions of kV-CBCTs, to account for inter-fractional bladder changes. This recipe was validated using kV-CBCTs from fractions six to ten and the final five fractions. The goal was to achieve a residual volume, defined as the percentage of daily bladder volume (V) outside the PTV, of less than 5%. Adaptive and conventional plans were created using proposed and conventional margins, respectively. A dosimetric comparison of targets and organs-at-risk (OARs) was performed between the two approaches.
Results: (V) decreased throughout the treatment course. The most notable inter-fractional bladder variations were in the superior and anterior directions. The patient-specific anisotropic adaptive margins, averaging 6 mm (± 2.9 mm), achieved a residual volume of less than 5%. Compared to conventional planning, the adaptive approach reduced PTV volume by an average of 135.3 cc (± 46.6 cc). A significant correlation (p < 0.05) was identified between residual volume and adaptive margins in the anterior, superior, left, and right directions. Using the proposed adaptive margins, the median residual volume was 0.71% (interquartile range 0.09%-3.55%), and the median (V) receiving the prescribed dose was 99.1% (interquartile range 95.3%-99.9%). Adaptive plans demonstrated superior OAR sparing compared to conventional plans.
Conclusions: The proposed patient-specific adaptive margin recipe for whole bladder irradiation resulted in margins smaller than conventional ones, optimized normal tissue sparing, and maintained adequate PTV coverage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/acm2.14617 | DOI Listing |
Phys Med Biol
January 2025
Department of Radiology Oncology, Emory University, Clifton Rd, Atlanta, Georgia, 30322-1007, UNITED STATES.
This study aims to develop a digital twin (DT) framework to achieve adaptive proton prostate stereotactic body radiation therapy (SBRT) with fast treatment plan selection and patient-specific clinical target volume (CTV) setup uncertainty. Prostate SBRT has emerged as a leading option for external beam radiotherapy due to its effectiveness and reduced treatment duration. However, interfractional anatomy variations can impact treatment outcomes.
View Article and Find Full Text PDFJ Med Syst
January 2025
Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, 75390, UNITED STATES.
Real-time cone-beam computed tomography (CBCT) provides instantaneous visualization of patient anatomy for image guidance, motion tracking, and online treatment adaptation in radiotherapy. While many real-time imaging and motion tracking methods leveraged patient-specific prior information to alleviate under-sampling challenges and meet the temporal constraint (< 500 ms), the prior information can be outdated and introduce biases, thus compromising the imaging and motion tracking accuracy. To address this challenge, we developed a framework (DREME) for real-time CBCT imaging and motion estimation, without relying on patient-specific prior knowledge.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
December 2024
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Patients with recurrent high-grade glioma (rHGG) have a poor prognosis with median progression-free survival (PFS) of <7 months. Responses to treatment are heterogenous, suggesting a clinical need for prognostic models. Bayesian data analysis can exploit individual patient follow-up imaging studies to adaptively predict the risk of progression.
View Article and Find Full Text PDFJ Exp Orthop
January 2025
Department of Orthopedics, Balgrist University Hospital University of Zurich Zurich Switzerland.
Purpose: The goals of this study were (1) to assess whether the preoperative difference between modalities and extent of deformity are associated with a higher difference between planned and achieved surgical correction and (2) if they yield a higher probability of intraoperative adjustments.
Methods: Retrospective single-centre analysis of patients undergoing patient-specific instrumented (PSI) total knee arthroplasty (TKA). Preoperative radiographic parameters were analysed on weightbearing (WB) long-leg radiographs (LLR) and nonweightbearing (NWB) computed tomography (CT).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!