Multicellular model of neuroblastoma proposes unconventional therapy based on multiple roles of p53.

PLoS Comput Biol

Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom.

Published: December 2024

Neuroblastoma is the most common extra-cranial solid tumour in children. Over half of all high-risk cases are expected to succumb to the disease even after chemotherapy, surgery, and immunotherapy. Although the importance of MYCN amplification in this disease is indisputable, the mechanistic details remain enigmatic. Here, we present a multicellular model of neuroblastoma comprising a continuous automaton, discrete cell agents, and a centre-based mechanical model, as well as the simulation results we obtained with it. The continuous automaton represents the tumour microenvironment as a grid-like structure, where each voxel is associated with continuous variables such as the oxygen level therein. Each discrete cell agent is defined by several attributes, including its cell cycle position, mutations, gene expression pattern, and more with behaviours such as cell cycling and cell death being stochastically dependent on these attributes. The centre-based mechanical model represents the properties of these agents as physical objects, describing how they repel each other as soft spheres. By implementing a stochastic simulation algorithm on modern GPUs, we simulated the dynamics of over one million neuroblastoma cells over a period of months. Specifically, we set up 1200 heterogeneous tumours and tracked the MYCN-amplified clone's dynamics in each, revealed the conditions that favour its growth, and tested its responses to 5000 drug combinations. Our results are in agreement with those reported in the literature and add new insights into how the MYCN-amplified clone's reproductive advantage in a tumour, its gene expression profile, the tumour's other clones (with different mutations), and the tumour's microenvironment are inter-related. Based on the results, we formulated a hypothesis, which argues that there are two distinct populations of neuroblastoma cells in the tumour; the p53 protein is pro-survival in one and pro-apoptosis in the other. It follows that alternating between inhibiting MDM2 to restore p53 activity and inhibiting ARF to attenuate p53 activity is a promising, if unorthodox, therapeutic strategy. The multicellular model has the advantages of modularity, high resolution, and scalability, making it a potential foundation for creating digital twins of neuroblastoma patients.

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pcbi.1012648DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723635PMC

Publication Analysis

Top Keywords

multicellular model
12
model neuroblastoma
8
continuous automaton
8
discrete cell
8
centre-based mechanical
8
mechanical model
8
gene expression
8
neuroblastoma cells
8
mycn-amplified clone's
8
p53 activity
8

Similar Publications

Prolonged Hypoxia in Rat Living Myocardial Slices Affects Function, Expression, and Structure.

Int J Mol Sci

December 2024

Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany.

Ischemic heart disease is the leading cause of death worldwide. Reduced oxygen supply and myocardial hypoxia lead to tissue damage and impairment of the heart function. To the best of our knowledge, the primary functional effects of hypoxia in the multicellular model of living myocardial slices (LMSs) have not been investigated so far.

View Article and Find Full Text PDF

Phenotypic analysis of complex bioengineered 3D models.

Trends Cell Biol

January 2025

Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia. Electronic address:

With advances in underlying technologies such as complex multicellular systems, synthetic materials, and bioengineering techniques, we can now generate in vitro miniaturized human tissues that recapitulate the organotypic features of normal or diseased tissues. Importantly, these 3D culture models have increasingly provided experimental access to diverse and complex tissues architectures and their morphogenic assembly in vitro. This review presents an analytical toolbox for biological researchers using 3D modeling technologies through which they can find a collation of currently available methods to phenotypically assess their 3D models in their normal state as well as their response to therapeutic or pathological agents.

View Article and Find Full Text PDF

In many multicellular organisms, sexual development is not determined by XX/XY or ZW/ZZ systems but by U/V sex chromosomes. In U/V systems, sex determination occurs in the haploid phase, with U chromosomes in females and V chromosomes in males. Here, we explore several male, female, and partially sex-reversed male lines of giant kelp to decipher how U/V sex chromosomes and autosomes initiate male versus female development.

View Article and Find Full Text PDF

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

Three-dimensional multicellular aggregates (MCAs) like organoids and spheroids have become essential tools to study the biological mechanisms involved in the progression of diseases. In cancer research, they are now widely used as in vitro models for drug testing. However, their analysis still relies on tedious manual procedures, which hinders their routine use in large-scale biological assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!