Electrocatalytic HER Performance of [FeFe]-Hydrogenase Mimics Bearing M-salen Moieties (M=Zn, Ni, Fe, Mn).

Chemistry

Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040-, Madrid, Spain.

Published: December 2024

The synthesis and characterization of novel compounds (5-8) as mimetics of [FeFe]-hydrogenase, combining two distinct systems capable of participating in hydrogen evolution reactions (HER): the [(μ-adt)Fe(CO)] fragment and M-salen complexes (salen=N,N'-bis(salicylidene)ethylenediamine) (M=Zn, Ni, Fe, Mn), is reported. These complexes were synthesized in high yields via a three-step procedure from N,N'-bis(4-R-salicylidene)ethanediamine) 4 [R=Fe(CO)(μ-SCH)NCOCHO]. Structural analysis through spectroscopic, spectrometric, and computational (DFT) methods confirmed distorted tetrahedral and square-planar geometries for Zn-salen and Ni-salen complexes (5 and 6) respectively, while complexes Fe-salen 7 and Mn-salen 8 exhibit square-based pyramidal structures typical of Fe(III) and Mn(III) high-spin salen-complexes. Electrochemical studies revealed different reduction events for [(μ-adt)Fe(CO)] and M-salen moieties, but the electrocatalytic experiments in TFA demonstrated a clear cooperative effect between these components, especially at higher acid concentrations. Notably, the Ni-salen (6), Fe-salen (7), and Mn-salen (8) complexes exhibit significant reductions in overpotential, highlighting their potential for enhanced catalytic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202403721DOI Listing

Publication Analysis

Top Keywords

m-salen moieties
8
fe-salen mn-salen
8
complexes
5
electrocatalytic performance
4
performance [fefe]-hydrogenase
4
[fefe]-hydrogenase mimics
4
mimics bearing
4
bearing m-salen
4
moieties m=zn
4
m=zn synthesis
4

Similar Publications

Electrocatalytic HER Performance of [FeFe]-Hydrogenase Mimics Bearing M-salen Moieties (M=Zn, Ni, Fe, Mn).

Chemistry

December 2024

Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040-, Madrid, Spain.

The synthesis and characterization of novel compounds (5-8) as mimetics of [FeFe]-hydrogenase, combining two distinct systems capable of participating in hydrogen evolution reactions (HER): the [(μ-adt)Fe(CO)] fragment and M-salen complexes (salen=N,N'-bis(salicylidene)ethylenediamine) (M=Zn, Ni, Fe, Mn), is reported. These complexes were synthesized in high yields via a three-step procedure from N,N'-bis(4-R-salicylidene)ethanediamine) 4 [R=Fe(CO)(μ-SCH)NCOCHO]. Structural analysis through spectroscopic, spectrometric, and computational (DFT) methods confirmed distorted tetrahedral and square-planar geometries for Zn-salen and Ni-salen complexes (5 and 6) respectively, while complexes Fe-salen 7 and Mn-salen 8 exhibit square-based pyramidal structures typical of Fe(III) and Mn(III) high-spin salen-complexes.

View Article and Find Full Text PDF

The ability of the transition metal complex M(salen)* (M = Ni, Cu) to form Lewis acid-base adducts with lead(II) salts has been explored. The new complexes Pb(Hsal)(2)(Cu(salen*))(2) (1), [Pb(NO(3))(Cu(salen*))(2)](NO(3)) (2), Pb(OAc)(2)(Cu(salen*)) (3), and [Pb(OAc)(Ni(salen*)(2)](OAc) (4) (Hsal = O(2)CC(6)H(4)-2-OH, salen* = bis(3-methoxy)salicylideneimine) have been synthesized and characterized spectroscopically and by single-crystal X-ray diffraction. The coordination environment of the lead in the heterobimetallic complex is sensitive both to the initial lead salt and to the transition metal salen* complex that is employed in the synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!