AI Article Synopsis

  • ESIPT molecules are highly useful as fluorophores for applications like bioimaging and OLEDs due to their unique fluorescence properties, but structural modifications are necessary for optimal performance.
  • A series of new ESIPT molecules (2PImBzP, 2ImBzP, and 2FImBzP) were developed by modifying imidazole-phenol cores, resulting in strong green emissions and high quantum yields (65-80%).
  • The optimized 2PImBzP OLED achieved remarkable performance with a brightness of 56,220 cd/m², a current efficiency of up to 17.66 cd/A, and an external quantum efficiency of 5.65%, demonstrating its potential in

Article Abstract

Excited-state intramolecular proton transfer (ESIPT) molecules are promising fluorophores for various applications including bioimaging, sensing, and optoelectronic devices. Particularly, their self-absorption-free fluorescence properties would make them a perfect choice as emissive materials for organic light-emitting diodes (OLEDs). Nevertheless, to become effective emitters some of their properties need to be altered by structural modifications. Herein, we design and synthesize a series of new ESIPT molecules (2PImBzP, 2ImBzP, and 2FImBzP) by functionalization of imidazole-phenol-based ESIPT cores with electron-deficient benzo[d]thiazole and various ambipolar imidazole moieties (1-phenyl-1H-phenanthro[9,10-d]imidazole (PIm), 1,4,5-triphenyl-1H-imidazole (Im), and (4,5-bis(4-fluorophenyl)-1-phenyl-1H-imidazole (FIm)), respectively. Each molecule displays a complete ESIPT process with intense green emissions from a pure keto form and high solid-state photoluminescence quantum yields (Φ) of 65-80 %. These fluorophores with superior thermal stability and balanced charge carrier mobility are effectively employed as non-doped emitters in OLEDs. The non-doped devices emit greenish lights with high brightness, high current efficiency (CE) (10.95-17.66 cd A), and low turn-on voltages (2.8-2.9 V). The electroluminescence purely originates from the emission of the keto tautomer of the emissive layers. Specifically, the 2PImBzP-based non-doped OLED stands out by achieving a remarkable brightness of 56,220 cd m, a CE of up to 17.66 cd A, and an impressive external quantum efficiency (EQE) of 5.65 % with a slight efficiency roll-off.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202401326DOI Listing

Publication Analysis

Top Keywords

imidazole-phenol-based esipt
8
esipt molecules
8
esipt
5
modified imidazole-phenol-based
4
esipt fluorophores
4
fluorophores self-absorption
4
self-absorption free
4
free emitters
4
emitters efficient
4
efficient electroluminescent
4

Similar Publications

Article Synopsis
  • ESIPT molecules are highly useful as fluorophores for applications like bioimaging and OLEDs due to their unique fluorescence properties, but structural modifications are necessary for optimal performance.
  • A series of new ESIPT molecules (2PImBzP, 2ImBzP, and 2FImBzP) were developed by modifying imidazole-phenol cores, resulting in strong green emissions and high quantum yields (65-80%).
  • The optimized 2PImBzP OLED achieved remarkable performance with a brightness of 56,220 cd/m², a current efficiency of up to 17.66 cd/A, and an external quantum efficiency of 5.65%, demonstrating its potential in
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!