Hydrothermally Constructed MoS/ZnInS Heterostructure for Promotion of Photocatalytic H Evolution.

Chem Asian J

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.

Published: December 2024

The integration of the second material with unique properties into original material to fabricate heterostructure represents an effective strategy to enhance photocatalytic H evolution. Herein, we synthesized a MoS/ZnInS heterostructured photocatalyst using a two-step hydrothermal method. The resulting MoS/ZnInS displayed the flower-like morphology formed by staked nanosheets, significantly accelerating photocatalytic H evolution performance. The optimal MoS/ZnInS (ZIS/Mo-50) achieved remarkable photocatalytic H production rate of 20.5 mmol g h, which is 18.5 times higher than that of pristine ZnInS. Further characterizations proved that the formation of the MoS/ZnInS heterostructure adjusted the energy band structure of ZnInS, enhancing its light absorption capability. Additionally, the heterostructure facilitated efficient charge separation and transfer. These enhancements notably boosted the photocatalytic H evolution, providing a promising example for designing efficient photocatalysts for H evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202401418DOI Listing

Publication Analysis

Top Keywords

photocatalytic evolution
16
mos/znins heterostructure
8
mos/znins
5
photocatalytic
5
evolution
5
hydrothermally constructed
4
constructed mos/znins
4
heterostructure
4
heterostructure promotion
4
promotion photocatalytic
4

Similar Publications

Unveiling the role of NiFeM hydroxide (M = Pt, Ru, Ir, Rh) cocatalysts for robust H production in photocatalytic water splitting.

Chem Commun (Camb)

January 2025

Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, China.

In this study, the NiFe-LDH doped with different Pt group metals (Pt, Ru, Ir, Rh) was prepared as a cocatalyst for photocatalytic H production over g-CN. It is found that the doped NiFe-LDH loaded g-CN generally displays higher photocatalytic activity than the raw NiFe-LDH modified one, where the NiFeRu-LDH loaded g-CN shows the optimal H evolution rate of 77.4 μmol h, about 5.

View Article and Find Full Text PDF

Template-free synthesis of single-crystal SrTiO nanocages for photocatalytic overall water splitting.

Chem Commun (Camb)

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

In this study, we present a novel approach to achieve the template-free fabrication of nanocage-shaped SrTiO (N-STO) single crystals molten salt flux treatment. Systematic characterizations demonstrate the high crystallinity and low defect density of N-STO. The N-STO single crystals enable overall water splitting (OWS) with hydrogen and oxygen evolution rates of 100.

View Article and Find Full Text PDF

Fine-tuning d-p hybridization in Ni-B cocatalyst for enhanced photocatalytic H production.

Nat Commun

January 2025

Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, PR China.

The H-evolution kinetics play a pivotal role in governing the photocatalytic hydrogen-evolution process. However, achieving precise regulation of the H-adsorption and H-desorption equilibrium (H/H) still remains a great challenge. Herein, we propose a fine-tuning d-p hybridization strategy to precisely optimize the H/H kinetics in a Ni-B modified CdS photocatalyst (Ni-B/CdS).

View Article and Find Full Text PDF

Type II/Schottky heterojunctions-triggered multi-channels charge transfer in Pd-TiO-CuO hybrid promotes photocatalytic hydrogen production.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:

Rapid charge recombination, limited light response, and slow surface reactions were observed in the photocatalysts, thereby limiting their future-oriented applications in photocatalytic hydrogen production through water splitting. Constructing a multi-channel charge separation photocatalysis system could solve those questions. In this study, Pd-TiO-CuO composites were successfully accomplished via a facile chemical reduction method.

View Article and Find Full Text PDF

A significant enhancement in the photocatalytic activity of metal-organic frameworks (MOFs) is achieved by expanding the visible-light response range through the strategic incorporation of functional groups, such as metalloporphyrins. Herein, Pd-metalised tetrakis(4-carboxyphenyl)porphyrin (PdTCPP) photosensitiser is integrated into the UiO-66-(NH) framework, creating the hybrid material PdTCPP ⊂ UiO-66-(NH) using a facile mixed-ligand strategy. Platinum nanoparticles (Pt NPs) are subsequently introduced as a co-catalyst via in situ photoreduction, resulting in the formation of the Pt/PdTCPP ⊂ UiO-66-(NH) hybrid material, which demonstrates exceptional catalytic performance under visible-light irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!