AI Article Synopsis

  • Disulfide bonds are essential in biochemistry and are typically made using methods that require catalysts, oxygen, or heat.
  • Researchers found that thiol groups in amino acids and peptides can form disulfide bonds spontaneously in water microdroplets at room temperature, without needing external catalysts or oxygen.
  • The formation process involves hydroxyl radicals on the surface of the droplets, which help oxidize thiols into radicals that then couple to create disulfide bonds, showcasing the effectiveness of microdroplet chemistry.

Article Abstract

Disulfide bonds (S-S) play a critical role in modern biochemistry, organic synthesis and prebiotic chemistry. Traditional methods for synthesizing disulfide bonds often rely on oxygen, alkali,  and metal catalysts. Herein, thiol groups involved in amino acids and peptides were spontaneously converted into symmetrical and unsymmetrical disulfide bonds within water microdroplets, without the need for catalysts or oxygen, and under room temperature. Water microdroplets displayed improved selectivity for disulfide bond formation, with minimal production of other oxidative species. Mechanistic investigations revealed that hydroxyl radicals (•OH) present on the water microdroplet surface facilitated the oxidation process. Thiols were firstly oxidized to thiyl radicals (RS•), which subsequently coupled to form disulfide bonds. This study highlights the potential of microdroplet chemistry as an efficient and mild approach for constructing disulfide bonds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202404036DOI Listing

Publication Analysis

Top Keywords

disulfide bonds
24
water microdroplets
12
disulfide
7
bonds
6
water
4
microdroplets promote
4
promote spontaneous
4
spontaneous oxidation
4
oxidation amino
4
amino acid-
4

Similar Publications

Disulfide bonds (S-S) play a critical role in modern biochemistry, organic synthesis and prebiotic chemistry. Traditional methods for synthesizing disulfide bonds often rely on oxygen, alkali,  and metal catalysts. Herein, thiol groups involved in amino acids and peptides were spontaneously converted into symmetrical and unsymmetrical disulfide bonds within water microdroplets, without the need for catalysts or oxygen, and under room temperature.

View Article and Find Full Text PDF

Background: Gliomas, particularly glioblastoma (GBM), are the most common and aggressive primary brain tumors in adults, characterized by high malignancy and frequent recurrence. Despite standard treatments, including surgery, radiotherapy, and chemotherapy, the prognosis for GBM remains poor, with a median survival of less than 15 months and a five-year survival rate below 10%. Tumor heterogeneity and resistance to treatment create significant challenges in controlling glioma progression.

View Article and Find Full Text PDF

Oxidative stress is an important driver of aging and has been linked to numerous neurodegenerative disorders, including Alzheimer's disease. A key pathological hallmark of Alzheimer's are filamentous inclusions made of the microtubule associated protein Tau. Based on alternative splicing, Tau protein can feature either three or four microtubule binding repeats.

View Article and Find Full Text PDF

In this study, the mesoporous FeO nanodrug carriers containing disulfide bonds (CHO-SMNPs) were successfully synthesized and characterized. Doxorubicin (DOX) was loaded onto the CHO-SMNPs as a model drug and gatekeeper through the formation of imine bonds with the aldehyde groups on the surface of the mesoporous materials. This drug carrier demonstrates effective drug release triggered by pH, glutathione (GSH), and near-infrared (NIR) light, along with satisfactory photothermal conversion efficiency under NIR irradiation at 808 nm.

View Article and Find Full Text PDF

Chlorophyll (Chl) is one of Nature's most complex pigments to biosynthesize and derivatize. This pigment is vital for survival and also paradoxically toxic if overproduced or released from a protective protein scaffold. Therefore, along with the mass production of Chl, organisms also invest in mechanisms to control its degradation and recycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!