A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Achieving precise control over the molecular periphery of dibenzoixenes through modular synthesis. | LitMetric

AI Article Synopsis

  • Nanographenes and polycyclic aromatic hydrocarbons are advanced organic semiconductors whose properties can be finely tuned by modifying their molecular edges.
  • This study introduces new synthetic methods to create various isomeric dibenzoixenes with diverse edge structures and reveals unique features like helically twisted cove edges.
  • The research highlights how these molecular structures influence the magnetic properties and shows potential for their use in Li-ion batteries, with dibenzo[a,p]ixene demonstrating notable energy storage capabilities.

Article Abstract

Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured. The single-crystal structures of dibenzo[a,p]ixene and dibenzo[j,y]ixene reveal enantiomeric pairs with helically twisted cove edges and packing structures. The molecular edge structures are identified from the C-H bonds of the dibenzoixenes using Fourier-transform infrared spectroscopy with different vibrational modes, which were further explained using density functional theory calculations. Electron spin resonance spectroscopy indicate that the zigzag-edged molecular periphery significantly affects the magnetic properties of the material. Furthermore, the electrochemical characteristics, examined using dibenzoixenes as anode materials in Li-ion batteries, reveal that the dibenzo[a,p]ixene exhibits promising Li intercalation behaviors with a specific capacity of ~120 mAh g-1. The findings of this study could facilitate the synthesis of larger [[EQUATION]]-extended systems with engineered molecular peripheries and potential application in organic electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202404189DOI Listing

Publication Analysis

Top Keywords

molecular peripheries
12
precise control
8
control molecular
8
molecular periphery
8
magnetic properties
8
edge structures
8
molecular
7
achieving precise
4
dibenzoixenes
4
periphery dibenzoixenes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!