Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Boosting the stability of cesium/formamidinium (Cs/FA) based perovskite solar cells (PSCs) has received tremendous attention. However, the crystallization of perovskites usually undergoes complex intermediate phase transitions and ion loss processes, which seriously degrade the efficiency and stability of PSCs. Herein, iodine monobromide (IBr, an interhalogen) is incorporated into the precursor solution to regulate the perovskite crystallization process. IBr can directly induce the formation of perovskite crystal nuclei in the intermediate film, avoiding a complex phase transformation (2H-4H-3C). This leads to a reduction in the impurity phase, an increase in grain size, and an improvement in crystal quality. Furthermore, IBr can effectively compensate X-anion vacancy, thereby reducing defect density and nonradiative recombination, which enhances device performance. Thus, the efficiency of the optimal device is 24.82%. Simultaneously, the device demonstrated excellent stability. After 400 h of continuous operation, the efficiency value of the unencapsulated PSCs still retains 89% of its initial value. This study provides an effective strategy for manufacturing PSCs with excellent efficiency and stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c16316 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!