A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning in personalized laryngeal cancer management: insights into clinical characteristics, therapeutic options, and survival predictions. | LitMetric

AI Article Synopsis

  • * Data from the SEER database was analyzed, utilizing Cox regression and five machine learning algorithms to identify key factors affecting 5-year survival, revealing that age, stage, and tumor size were crucial for survival predictions.
  • * Findings indicate that tailored treatment strategies, particularly a combination of surgery and radiotherapy, are optimal for managing early-stage tumors, while emphasizing the need for ongoing improvements in treatment approaches to enhance patient outcomes.

Article Abstract

Purpose: Over the last 40 years, there has been an unusual trend where, even though there are more varied treatments, survival rates have not improved much. Our study used survival analysis and machine learning (ML) to investigate this odd situation and to improve prediction methods for treating non-metastatic LSCC.

Methods: The surveillance, epidemiology and end results (SEER) database provided the data used for this study's analysis. To identify the prognostic variables for patients with non-metastatic LSCC, we conducted Cox regression analysis and constructed prognostic models using five ML algorithms to predict 5-year survival. A method of validation that incorporated the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was employed to validate the accuracy and reliability of the ML models. We also investigated the role of multiple therapeutic options using Kaplan Meier (K-M) survival analysis.

Results: The study included 63,324 patients, of whom 40,824 were diagnosed with glottic cancer (GC), 21,774 with supraglottic (SuGC) and 726 with subglottic (SC). ML models identified age, stage, and tumor size as the most important factors that affect survival. For SuGC, age, stage, and sex and stage and race for SC. In terms of treatment, best survival therapeutic options for GC and SC were surgery and radiotherapy (RT), whereas SuGC surgery only.

Conclusion: This study underscores the critical role of individualized factors in non-metastatic LSCC management, with surgery often combined with radiotherapy as the optimal treatment for early stage tumors. Despite advancements, stable prognosis highlights the need for continuous refinement of therapeutic strategies to balance tumor control and quality of life.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00405-024-09171-1DOI Listing

Publication Analysis

Top Keywords

therapeutic options
12
machine learning
8
non-metastatic lscc
8
age stage
8
survival
7
learning personalized
4
personalized laryngeal
4
laryngeal cancer
4
cancer management
4
management insights
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!