Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale: The positive reinforcing effects of alcohol (ethanol) drive repetitive use and contribute to alcohol use disorder (AUD). Ethanol alters the expression of glutamate AMPA receptor (AMPAR) subunits in reward-related brain regions, but the extent to which this effect regulates ethanol's reinforcing properties is unclear.
Objective: This study investigates whether ethanol self-administration changes AMPAR subunit expression and synaptic activity in the nucleus accumbens core (AcbC) to regulate ethanol's reinforcing effects in male C57BL/6 J mice.
Results: Sucrose-sweetened ethanol self-administration (0.81 g/kg/day) increased AMPAR GluA2 protein expression in the AcbC, without effect on GluA1, compared to sucrose-only controls. Infusion of myristoylated Pep2m in the AcbC, which blocks GluA2 binding to N-ethylmaleimide-sensitive fusion protein (NSF) and reduces GluA2-containing AMPAR activity, reduced ethanol-reinforced responding without affecting sucrose-only self-administration or motor activity. Antagonizing GluA2-lacking AMPARs, through AcbC infusion of NASPM, had no effect on ethanol self-administration. AcbC neurons receiving projections from the basolateral amygdala (BLA) showed increased sEPSC area under the curve (a measurement of charge transfer) and slower decay kinetics in ethanol self-administering mice as compared to sucrose. Optogenetic activation of these neurons revealed an ethanol-enhanced AMPA/NMDA ratio and significantly reduced paired-pulse ratio, suggesting elevated GluA2 contributions specifically within the BLA➔AcbC pathway.
Conclusions: Ethanol use upregulates GluA2 protein expression in the AcbC and AMPAR synaptic activity in AcbC neurons receiving BLA projections and enhances synaptic plasticity directly within the BLA➔AcbC circuit. GluA2-containing AMPAR activity in the AcbC regulates the positive reinforcing effects of ethanol through an NSF-dependent mechanism, highlighting a potential therapeutic target in AUD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00213-024-06740-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!