Molecular frameworks have recently shown a great potential in atmospheric water harvesting, in which the water release at low temperatures is challenging. Anion-organic frameworks based on anion-coordination chemistry are presented herein to meet this challenge. These frameworks are prepared as tubular single crystals in pure water from the in situ protonation and crystallization of pyridine-terminated triphenylamine derivatives with hydrochloric or hydrobromic acid. They possess a 2D honeycombed porous structure and carry halogen anions confined within 1D hexagonal nanochannels with a modular size of 1.7-2.3 nm. They exhibit a high water uptake of up to 0.87 g g and a water release onset temperature as low as -90 °C. The water uptake and release induce significant changes in the crystal morphology and absorption and emission properties of these framework crystals, providing a visual indication of their hydration states over a wide temperature range. The kinetics of dehydration at subglacial temperatures is successfully determined by emission spectral shifts. These framework crystals show a high water-stability and can be used for repeated water capture and release thanks to a rapid and robust self-healing capability. This discovery opens opportunities for the design and synthesis of flexible and self-healing frameworks for porosity-related applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202419096DOI Listing

Publication Analysis

Top Keywords

water release
12
anion-organic frameworks
8
water
8
water uptake
8
framework crystals
8
frameworks
5
release
5
self-healing anion-organic
4
frameworks low-temperature
4
low-temperature water
4

Similar Publications

Coastal ecosystems play a major role in marine carbon budgets, but substantial uncertainties remain in the sources and fluxes of coastal carbon dioxide (CO). Here, we assess when, where, and how submarine groundwater discharge (SGD) releases CO to shallow coastal ecosystems. Time-series observations of dissolved CO and radon (Rn, a natural groundwater tracer) across 40 coastal systems from 14 countries revealed large SGD-derived CO fluxes.

View Article and Find Full Text PDF

Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.

View Article and Find Full Text PDF

Inorganic-organic hybrid nanoparticles with carbonate-triggered emission-colour-shift.

Dalton Trans

January 2025

Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany.

(Eu[PTC])(Eu[TREN-1,2-HOPO]) inorganic-organic hybrid nanoparticles (IOH-NPs) contain Eu, tris[(1-hydroxy-2-oxo-1,2-dihydropyridine-6-carboxamido)ethyl]amine (TREN-1,2-HOPO) and perylene-3,4,9,10-tetracarboxylate (PTC). The IOH-NPs are prepared in water and exhibit a rod-type shape, with a length of 60 nm and a diameter of 5 nm. Particle size and chemical composition are examined by different methods (SEM, DLS, FT-IR, TG, C/H/N analysis).

View Article and Find Full Text PDF

Amphiphilic bottlebrush block copolymers (BBCs) with tadpole-like, coil-rod architecture can be used to self-assemble into functional polymer nanodiscs directly in water. The hydrophobic segments of the BBC were tuned via the ratio of ethoxy-ethyl glycidyl ether (EE) to tetrahydropyranyl glycidyl ether (TP) within the grafted polymer sidechains. In turn, this variation controlled the sizes, pH-responsiveness, and drug loading capacity of the self-assembled nanodiscs.

View Article and Find Full Text PDF

Cryogels were fabricated by combining polyvinyl alcohol (PVA) and chitosan of varying molecular weights (Mw). In this study, the effects of chitosan Mw, types of boron-containing molecules on network formation, and boron release rate in resulted cryogels were investigated. The PVA/chitosan blend maintained a constant 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!