The binding free energy of hydrogen-bonded complexes is generally inversely proportional to the solvent dielectric constant. This occurs because the solvent-accessible surface area of the complex is always smaller than that of the individual subsystems, leading to a reduction in solvation energy. The present study explores the potential for stabilizing hydrogen-bonded complexes in a solvent with higher polarity. Contrary to the established understanding, we have demonstrated that the hydrogen-bonded complex (CHCHCOOH⋅⋅⋅2,4,6-trimethylpyridine) can be better stabilized in a solvent with higher polarity. In this case, a significant charge transfer between the subsystems results in an increased dipole moment of the complex, leading to its stabilization in a more polar solvent. The expected inverse relationship between binding free energy and solvent dielectric constant is observed when the charge transfer between the subsystems is low. Thus, the magnitude of the charge transfer between subsystems is possibly the key factor in determining the stabilization or destabilization of H-bonded complexes in different solvents. Here, we present a comprehensive study that combines experimental and theoretical approaches, including nuclear magnetic resonance (NMR), infrared (IR) spectroscopies and quantum chemical calculations to validate the findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202422594 | DOI Listing |
Int J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China. Electronic address:
The weak cohesive strength of tissue adhesives hinders their practical applications. To overcome this challenge, we develop a green bio-adhesive that balances both cohesion and adhesion, drawing inspiration from the natural adhesion mechanisms of mussels. This bio-adhesive, referred to as OTS, was ingeniously crafted through the co-assembly of multi-surface-charged chitin nanofibers (OAChN) and tannic acid (TA), integrated with silk fibroin (SF), resulting in a material with enhanced cohesive strength and robust adhesive properties.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus of Mumbai University, Santacruz (E), Mumbai 400098, India.
Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China. Electronic address:
Enhancing the decomposition rate of ammonium perchlorate (AP), the most common oxidizer in solid propellants, is important for improving propellant performance. Metal organic frameworks (MOFs) have been developed as key materials for catalyzing AP decomposition, as they can achieve good dispersion of active sites through in-situ decomposition. Despite having considerable potential, the structural transformation process and catalytic performance of MOFs in AP decomposition are still unclear, which seriously hinders their application in the field of AP decomposition.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic.
The binding free energy of hydrogen-bonded complexes is generally inversely proportional to the solvent dielectric constant. This occurs because the solvent-accessible surface area of the complex is always smaller than that of the individual subsystems, leading to a reduction in solvation energy. The present study explores the potential for stabilizing hydrogen-bonded complexes in a solvent with higher polarity.
View Article and Find Full Text PDFPolym Chem
December 2024
Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
Secondary interactions, such as hydrogen bonding or phase separation, can enhance the stability of dynamic covalent materials without compromising on desired dynamic properties. Here, we investigate the combination of multiple secondary interactions in dynamic covalent materials based on acylsemicarbazides (ASCs), with the aim of achieving tunable material properties. The effects of different ASC substituents on the dynamic covalent and hydrogen bonding capabilities were investigated in a small molecule study using a combined experimental and theoretical approach, and revealed the presence of cooperative hydrogen-bonding interactions in 2 directions in one of the derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!