This research investigates the interplay between Reactive Oxygen Species (ROS) and Apelin (APLN) in regulating autophagy, with implications for placental cell senescence and apoptosis in pre-eclampsia (PE). We manipulated APLN expression using sgRNA to study its effects on ROS levels and subsequent cellular responses. Our findings reveal that APLN overexpression elevates ROS production, accelerating cellular senescence and apoptosis. In contrast, silencing APLN enhances autophagy, thereby diminishing cellular aging and apoptosis. These outcomes were confirmed and experiments, establishing a causative relationship between ROS-mediated APLN modulation and altered placental cell dynamics in PE. The results suggest potential therapeutic targets within the ROS and APLN pathways to alleviate detrimental changes in the placenta, offering new strategies for the clinical management of PE. This study emphasizes the crucial role of autophagy in placental health and sets the stage for future investigations into therapeutic interventions for pregnancy-related complications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10715762.2024.2446337 | DOI Listing |
Alzheimers Dement
December 2024
Federal University of Technology, Akure, Ondo, Nigeria.
Background: In recent decades, epidemiological and experimental studies have looked into the role of pesticides, particularly the herbicide paraquat, in the development of Parkinson's disease. Horseradish tree (Moringa oleifera) is an ethnobotanical plant with lots of therapeutic potential, but there is a dearth of information on the bioactive properties of the seed alkaloid extracts.
Method: This study examined the modulatory effects of various concentrations of an alkaloid extract from the seeds of Horseradish Tree (Moringa oleifera) on the survival rate of flies exposed to paraquat, as well as certain biochemical and molecular markers related to Parkinson's disease in the heads of the flies.
Alzheimers Dement
December 2024
Shoolini University, Solan, Himachal Pradesh, India.
Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline, neuroinflammation, and mitochondrial dysfunction. In Alzheimer's, abnormal Mitochondrial Permeability Transition Pore (mPTP) activity may contribute to mitochondrial dysfunction and neuronal damage. Withanolide A, a naturally occurring compound derived from Withania somnifera, have shown potential neuroprotective effects in various neurological disorders.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
Background: We identified small molecule tricyclic pyrone compound CP2 as a mild mitochondrial complex I (MCI) inhibitor that induces neuroprotection in multiple mouse models of AD. One of the major concerns while targeting mitochondria is the production of reactive oxygen species (ROS). CP2 consists of two diastereoisomers, D1 and D2, with distinct activity and toxicity profiles.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with neuroinflammation and heightened production of reactive oxygen species (ROS) in the brain from overactive NADPH Oxidase 2 (NOX2). The current study examines whether administration of a novel, brain-penetrant NOX2 inhibitor (CPP11G & CPP11H) reduces amyloid plaque load and improves AD-associated vascular dysfunction in a male APP-PS1 mouse model of AD.
Method: Intraperitoneal injections of CPP11G (n = 1) or CPP11H (n = 2) three times per week began at 9-10 months of age in the treatment APP-PS1 group (15 mg/kg).
Background: Reliable treatment approaches for addressing early cognitive impairment and Alzheimer's disease (AD) are currently lacking. Given the multifactorial nature of AD, therapeutic strategies need to focus on disease-specific biochemical pathways. Given the significance of metabolic pathways in cognitive impairment, it is essential to investigate alternative disease modifiers capable of targeting multiple metabolic pathways, such as phytochemicals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!