A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pressure estimation of ultra-high frequency ultrasound using gas vesicles. | LitMetric

AI Article Synopsis

  • Acoustic microscopy utilizes ultra-high frequency ultrasound transducers over 80 MHz for high-resolution imaging, but their pressure output is not well understood due to limitations in current measuring tools.
  • This study introduced gas vesicle nanostructures that collapse at a specific pressure to estimate pressure outputs of various UHF transducers (40, 80, 200, and 375 MHz).
  • The results showed that the method was validated for 40 MHz, with calculated pressures for the other frequencies indicating measurable pressure outputs in the 40-400 MHz range.

Article Abstract

Acoustic microscopy uses ultra-high frequency (UHF) ultrasound transducers over 80 MHz to perform high-resolution imaging. The pressure output of these transducers is unknown, as commercial calibrated hydrophones can measure pressure for transducers with frequencies only up to 80 MHz. This study used gas vesicle nanostructures (GVs) that collapse at 571 kPa to estimate the pressure of UHF transducers at 40, 80, 200, and 375 MHz. Agarose phantoms containing GVs were made, and a baseline ultrasound image was performed at low pressure to prevent GV collapse. Sections within the phantom were scanned at varying voltage to determine the GV collapse threshold. The pressure at full driving voltage was then calculated, assuming a linear relation between transducer voltage and pressure. The pressure calculated for the 40 MHz transducer was 2.2 ± 0.1 MPa at 21 °C. Using a hydrophone, the measured pressure was 2.1 ± 0.3 MPa, a difference of <2%, validating the method at this frequency. The pressure calculated for the other transducers was 2.0 ± 0.1 MPa (80 MHz), 1.2 ± 0.1 (200 MHz), and 1.05 ± 0.17 (375 MHz at 37 °C). This study addresses the challenge of estimating pressure output from UHF ultrasound transducers, demonstrating that the pressure output in the 40-400 MHz frequency range can be quantified.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0034438DOI Listing

Publication Analysis

Top Keywords

pressure
9
ultra-high frequency
8
pressure estimation
4
estimation ultra-high
4
frequency ultrasound
4
ultrasound gas
4
gas vesicles
4
vesicles acoustic
4
acoustic microscopy
4
microscopy ultra-high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: