A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate the starch synthesis and grain quality in bread wheat. | LitMetric

TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate the starch synthesis and grain quality in bread wheat.

J Integr Plant Biol

Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

Published: December 2024

AI Article Synopsis

  • * Genome-editing created tadl mutant lines showing smaller, lighter grains with lower starch and amylose levels, indicating TaDL’s importance in starch production.
  • * TaDL interacts with TaB3 and TaNF-YB1 to enhance starch-related gene expression, influencing grain filling, and highlighting potential for breeding high-yield, high-quality wheat.

Article Abstract

Starch biosynthesis is a critical factor in wheat (Triticum aestivum L.) quality and yield. However, the full scope of its regulation is not fully understood. Here we report that TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate starch biosynthesis and quality in wheat. Genome-edited tadl mutant lines had smaller and lighter grains with lower total starch and amylose contents compared to wild type (WT). Correspondingly, the transcript levels of starch biosynthesis-related genes, including TaSUS1, TaSUS2, TaAGPL2, TaSBEIIa, TaGBSSII, and TaSWEET2a, were markedly lower at 15 d after flowering (DAF) in tadl mutants. TaDL physically interacted with TaB3 and TaNF-YB1 and activated the transcription of TaSUS2 and TaAGPL2 through direct binding to their promoter regions. A null mutant of TaB3 also affected grain filling, with phenotypes similar to those of tadl mutants, whereas overexpression of TaNF-YB1 promoted grain filling. Our study demonstrated that TaDL plays an essential role in starch biosynthesis and identified an elite allele (TaDL-BI) associated with starch content, providing insights into the underlying molecular mechanism of wheat grain filling, which may be useful in breeding of high-yielding wheat and quality improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jipb.13815DOI Listing

Publication Analysis

Top Keywords

tab3 tanf-yb1
12
starch biosynthesis
12
grain filling
12
tadl interacts
8
interacts tab3
8
tanf-yb1 synergistically
8
synergistically regulate
8
regulate starch
8
tasus2 taagpl2
8
tadl mutants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!