A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of cardiac substructure automatic segmentation methods on synthetically generated 4D cone-beam CT images. | LitMetric

Background: STereotactic Arrhythmia Radioablation (STAR) is a novel noninvasive method for treating arrythmias in which external beam radiation is directed towards subregions of the heart. Challenges for accurate STAR targeting include small target volumes and relatively large patient motion, which can lead to radiation related patient toxicities. 4D Cone-beam CT (CBCT) images are used for stereotactic lung treatments to account for respiration-related patient motion. 4D-CBCT imaging could similarly be used to account for respiration-related patient motion in STAR; however, the poor contrast of heart tissue in CBCT makes identifying cardiac substructures in 4D-CBCT images challenging. If cardiac structures can be identified in pre-treatment 4D-CBCT images, then the location of the target volume can be more accurately identified for different phases of the respiration cycle, leading to more accurate targeting and a reduction in patient toxicities.

Purpose: The aim of this simulation study is to investigate the accuracy of different cardiac substructure segmentation methods for 4D-CBCT images.

Methods: Repeat 4D-CT scans from 13 lung cancer patients were obtained from The Cancer Imaging Archive. Synthetic 4D-CBCT images for each patient were simulated by forward projecting and reconstructing each respiration phase of a chosen "testing" 4D-CT scan. Eighteen cardiac structures were segmented from each respiration phase image in the testing 4D-CT using the previously validated platipy toolkit. The platipy segmentations from the testing 4D-CT were defined as the ground truth segmentations for the synthetic 4D-CBCT images. Five different 4D-CBCT cardiac segmentation methods were investigated: 3D Rigid Alignment, 4D Rigid Alignment, Direct CBCT Segmentation, Contour Transformation, and Synthetic CT Segmentation methods. For all methods except the Direct CBCT segmentation method, a separate 4D-CT (Planning CT) was used to assist in generating 4D-CBCT segmentations. Segmentation performance was measured using the Dice similarity coefficient (DSC), Hausdorff distance (HD), mean surface distance (MSD), and volume ratio (VR) metrics.

Results: The mean ± standard deviation DSC for all cardiac substructures for the 3D Rigid Alignment, 4D Rigid Alignment, Direct CBCT Segmentation, Contour Transformation, and Synthetic CT Segmentation methods were 0.48 ± 0.29, 0.52 ± 0.29, 0.37 ± 0.32, 0.53 ± 0.29, 0.57 ± 0.28, respectively. Similarly, the HD values were 10.9 ± 3.6 , 9.9 ± 2.6 , 17.3 ± 5.3 , 9.9 ± 2.8 , 9.3 ± 3.0 mm, the MSD values were 2.9 ± 0.6 , 2.9 ± 0.6 , 6.3 ± 2.5 , 2.5 ± 0.6 , 2.4 ± 0.8 mm, and the VR Values were 0.81 ± 0.12, 0.78 ± 0.14, 1.10 ± 0.47, 0.72 ± 0.15, 0.98 ± 0.44, respectively. Of the five methods investigated the Synthetic CT segmentation method generated the most accurate segmentations for all calculated segmentation metrics.

Conclusion: This simulation study investigates the accuracy of different cardiac substructure segmentation methods for 4D-CBCT images. Accurate 4D-CBCT cardiac segmentation will provide more accurate information on the location of cardiac anatomy during STAR treatments which can lead to safer and more effective STAR. As the data and segmentation methods used in this study are all open source, this study provides a useful benchmarking tool to evaluate other CBCT cardiac segmentation methods.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17596DOI Listing

Publication Analysis

Top Keywords

segmentation methods
32
4d-cbct images
20
rigid alignment
16
segmentation
15
cardiac substructure
12
patient motion
12
cardiac segmentation
12
direct cbct
12
cbct segmentation
12
synthetic segmentation
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!