A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

T1-contrast enhanced MRI generation from multi-parametric MRI for glioma patients with latent tumor conditioning. | LitMetric

AI Article Synopsis

  • Gadolinium-based contrast agents (GBCAs) are used in MRI scans for gliomas, but concerns about their toxicity have led to the development of a deep-learning model, the tumor-aware vision transformer (TA-ViT), to generate T1-postcontrast images from pre-contrast MRI.
  • The TA-ViT model significantly improves tumor region prediction using adaptive layer normalization and is trained on a dataset of 501 glioma cases, demonstrating its effectiveness compared to the benchmark model.
  • Results show that TA-ViT produces high-quality synthetic T1C images with greater accuracy in capturing tumor and healthy tissue compared to the previous model, showcasing improvements in metrics like PSNR and NMSE.

Article Abstract

Background: Gadolinium-based contrast agents (GBCAs) are commonly used in MRI scans of patients with gliomas to enhance brain tumor characterization using T1-weighted (T1W) MRI. However, there is growing concern about GBCA toxicity. This study develops a deep-learning framework to generate T1-postcontrast (T1C) from pre-contrast multiparametric MRI.

Purpose: We propose the tumor-aware vision transformer (TA-ViT) model that predicts high-quality T1C images. The predicted tumor region is significantly improved (p < 0.001) by conditioning the transformer layers from predicted segmentation maps through the adaptive layer norm zero mechanism. The predicted segmentation maps were generated with the multi-parametric residual (MPR) ViT model and transformed into a latent space to produce compressed, feature-rich representations. The TA-ViT model was applied to T1w and T2-FLAIR to predict T1C MRI images of 501 glioma cases from an open-source dataset. Selected patients were split into training (N = 400), validation (N = 50), and test (N = 51) sets. Model performance was evaluated with the peak-signal-to-noise ratio (PSNR), normalized cross-correlation (NCC), and normalized mean squared error (NMSE).

Results: Both qualitative and quantitative results demonstrate that the TA-ViT model performs superior against the benchmark MPR-ViT model. Our method produces synthetic T1C MRI with high soft tissue contrast and more accurately synthesizes both the tumor and whole brain volumes. The synthesized T1C images achieved remarkable improvements in both tumor and healthy tissue regions compared to the MPR-ViT model. For healthy tissue and tumor regions, the results were as follows: NMSE: 8.53 ± 4.61E-4; PSNR: 31.2 ± 2.2; NCC: 0.908 ± 0.041 and NMSE: 1.22 ± 1.27E-4, PSNR: 41.3 ± 4.7, and NCC: 0.879 ± 0.042, respectively.

Conclusion: The proposed method generates synthetic T1C images that closely resemble real T1C images. Future development and application of this approach may enable contrast-agent-free MRI for brain tumor patients, eliminating the risk of GBCA toxicity and simplifying the MRI scan protocol.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17600DOI Listing

Publication Analysis

Top Keywords

t1c images
16
ta-vit model
12
mri
8
brain tumor
8
gbca toxicity
8
predicted segmentation
8
segmentation maps
8
t1c mri
8
mpr-vit model
8
synthetic t1c
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: